Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(5): 401-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466185

RESUMO

OBJECTIVE: Magnolol (MG) and Brucea javanica (L.) Merr. oil (BJO) possess synergetic anti-tumor effects, but have poor water solubility and stability, which results in low oral bioavailability. SIGNIFICANCE: The MG loaded self-microemulsion drug delivery system (MG-SMDDS) with BJO as oil phase component was utilized to improve the cellular uptake and synergetic anti-tumor effects. METHODS: Compatibility study and pseudoternary phase diagram (PTPD) were respectively employed to screen for the composition and proportion of oil phase in the formulation. Central composite design-effect surface method was applied to optimize proportion of each formulation condition. The droplet size, ζ-potential, colloid stability, encapsulation rate (ER) and in vitro dissolution rate of MG-SMDDS were evaluated. Furthermore, cellular uptake and cytotoxicity of the microemulsion on HepG2 cells were assessed. RESULTS: The optimal composition of MG-SMDDS was: MG (9.09%), castor oil (7.40%), BJO (2.47%), Cremophor EL 35 (54.04%) and 1, 2-propanediol (27.01%). The MG-SMDDS exhibited satisfactory droplet size, ζ-potential, colloid stability and ER, as well as faster dissolution rate than free MG. More importantly, SMEDDS containing BJO could enhance the cellular uptake and cytotoxicity of free BJO and free MG on tumor cells. CONCLUSIONS: The BJO self-microemulsion delivery technique can provide an idea for design of oral delivery vehicles based on BJO.


Assuntos
Compostos de Bifenilo , Brucea , Sistemas de Liberação de Medicamentos , Emulsões , Lignanas , Óleos de Plantas , Solubilidade , Lignanas/administração & dosagem , Lignanas/farmacologia , Lignanas/farmacocinética , Lignanas/química , Humanos , Brucea/química , Compostos de Bifenilo/química , Células Hep G2 , Sistemas de Liberação de Medicamentos/métodos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Tamanho da Partícula , Disponibilidade Biológica , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 2807-2821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525014

RESUMO

Background: Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods: An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results: The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion: These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.


Assuntos
Nanopartículas , Fosfatidiletanolaminas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Portadores de Fármacos/química , Ácido Linoleico , Polietilenoglicóis/química , Nanopartículas/química , Movimento Celular , Proliferação de Células , Metilcelulose
3.
Drug Deliv ; 29(1): 2491-2497, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35912819

RESUMO

Periplocymarin (PPM), a cardiac glycoside isolated from Cortex periplocae, has a strong anti-tumor effect against various cancer cells. However, cardiotoxicity and rapid metabolism hinder its clinical applications. In this study, small molecule prodrug was integrated into PEGylated liposome to improve the efficiency of periplocymarin in vivo. The periplocymarin-linoleic acid (PL) prodrug was constructed by conjugating the linoleic acid with PPM via esterification, which was further facilitated to form PEGylated liposome (PL-Lip) through film dispersion. Compared with PL self-assembling nano-prodrug (PL-SNP), PL-Lip showed better colloid stability, sustained drug release kinetics, and enhanced cellular uptake by tumor cells. Notably, PL-Lip performed better than PPM and PL-SNP in terms of tumor distribution and pharmacokinetics, which include bioavailability and half-life. Altogether, the prodrug PEGylated liposome represents a good strategy and method for long-circulating and tumor-targeting delivery of periplocymarin with enhanced clinical application prospect.


Assuntos
Glicosídeos Cardíacos , Pró-Fármacos , Disponibilidade Biológica , Glicosídeos Cardíacos/farmacocinética , Ácido Linoleico , Lipossomos/farmacocinética , Polietilenoglicóis , Pró-Fármacos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA