Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(11): 6665-6671, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350652

RESUMO

Nanocrystals (NCs) with identical components and sizes but different crystal structures could not be distinguished by conventional absorption and emission spectra. Herein, we find that circular dichroism (CD) spectroscopy can easily distinguish the CdSe nanoplatelets (NPLs) with different crystal structures of wurtzite (WZ) and zincblende (ZB) with the help of chiral l- or d-cysteine ligands. In particular, the CD signs of the first excitonic transitions in WZ and ZB NPLs capped by the same chiral cysteine are opposite. Theoretic calculation supports the viewpoint of different crystal structures and surfaces arrangements between WZ and ZB NPLs contributing to this significant phenomenon. The CD peaks appearing at the first excitonic transition band of WZ or ZB CdSe NPLs are clearly assigned to the different transition polarizations along 4p( x,y,z),Se → 5sCd or 4p( x,y),Se → 5sCd. This work not only provides a deep insight into the origin of the optical activity inside chiral semiconductor nanomaterials but also proposes the design principle of chiral semiconductor nanocrystals with high optic activity.

2.
Phys Rev Lett ; 111(5): 055502, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952417

RESUMO

Ductile metals such as Ni and Cu can become brittle when certain impurities (e.g., Bi) diffuse and segregate into their grain boundaries (GBs). Using first-principles calculations, we investigate the microscopic origin of the Bi-induced loss of cohesion of Ni and Cu GBs. We find that the Bi bilayer interfacial phase is the most stable impurity phase under the Bi-rich condition, while the Bi monolayer phase is a metastable phase regardless of the value of the Bi chemical potential. Our finding is consistent with the recent experimental observation for Ni GBs [Luo et al. Science 333, 1730 (2011)]. The electric polarization effect of the Bi bilayer substantially enhances the strength of the Bi-metal interfacial bonds, stabilizing the bilayer phase over other phases. The Bi-Bi interlayer bonding is significantly weakened in the GBs, leading to a factor of 20 to 50 decrease in the GB cohesion, which has strong implications for the understanding of Bi-induced intergranular fracture of Ni and Cu polycrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA