Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 90, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711083

RESUMO

BACKGROUND: Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS: The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS: Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS: The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas , L-Lactato Desidrogenase , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Humanos , Histonas/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Retroalimentação Fisiológica , Epigênese Genética , Carcinogênese/metabolismo , Carcinogênese/genética , Prognóstico , Proliferação de Células , Feminino
2.
Asian J Androl ; 25(3): 331-338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35848706

RESUMO

Male diabetic individuals present a marked impairment in fertility; however, knowledge regarding the pathogenic mechanisms and therapeutic strategies is unsatisfactory. The new hypoglycemic drug dapagliflozin has shown certain benefits, such as decreasing the risk of cardiovascular and renal events in patients with diabetes. Even so, until now, the effects and underlying mechanisms of dapagliflozin on diabetic male infertility have awaited clarification. Here, we found that dapagliflozin lowered blood glucose levels, alleviated seminiferous tubule destruction, and increased sperm concentrations and motility in leptin receptor-deficient diabetic db/db mice. Moreover, the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin (9-39) had no effect on glucose levels but reversed the protective effects of dapagliflozin on testicular structure and sperm quality in db/db mice. We also found that dapagliflozin inhibited the testicular apoptotic process by upregulating the expression of the antiapoptotic protein B-cell lymphoma 2 (BCL2) and X-linked inhibitor of apoptosis protein (XIAP) and inhibiting oxidative stress by enhancing the antioxidant status, including total antioxidant capacity, total superoxide dismutase (SOD) activity, and glutathione peroxidase (GPx) activity, as well as decreasing the level of 4-hydroxynonenal (4-HNE). Exendin (9-39) administration partially reversed these effects. Furthermore, dapagliflozin upregulated the glucagon-like peptide-1 (GLP-1) level in plasma and GLP-1R expression by promoting AKT8 virus oncogene cellular homolog (Akt) phosphorylation in testicular tissue. Exendin (9-39) partially inhibited Akt phosphorylation. These results suggest that dapagliflozin protects against diabetes-induced spermatogenic dysfunction via activation of the GLP-1R/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Our results indicate the potential effects of dapagliflozin against diabetes-induced spermatogenic dysfunction.


Assuntos
Diabetes Mellitus , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes , Fosfatidilinositol 3-Quinases/metabolismo , Sêmen/metabolismo
3.
Am J Physiol Endocrinol Metab ; 324(1): E97-E113, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383639

RESUMO

Glucagon-secreting pancreatic α-cells play pivotal roles in the development of diabetes. Glucagon promotes insulin secretion from ß-cells. However, the long-term effect of glucagon on the function and phenotype of ß-cells had remained elusive. In this study, we found that long-term glucagon intervention or glucagon intervention with the presence of palmitic acid downregulated ß-cell-specific markers and inhibited insulin secretion in cultured ß-cells. These results suggested that glucagon induced ß-cell dedifferentiation under pathological conditions. Glucagon blockage by a glucagon receptor (GCGR) monoclonal antibody (mAb) attenuated glucagon-induced ß-cell dedifferentiation. In primary islets, GCGR mAb treatment upregulated ß-cell-specific markers and increased insulin content, suggesting that blockage of endogenous glucagon-GCGR signaling inhibited ß-cell dedifferentiation. To investigate the possible mechanism, we found that glucagon decreased FoxO1 expression. FoxO1 inhibitor mimicked the effect of glucagon, whereas FoxO1 overexpression reversed the glucagon-induced ß-cell dedifferentiation. In db/db mice and ß-cell lineage-tracing diabetic mice, GCGR mAb lowered glucose level, upregulated plasma insulin level, increased ß-cell area, and inhibited ß-cell dedifferentiation. In aged ß-cell-specific FoxO1 knockout mice (with the blood glucose level elevated as a diabetic model), the glucose-lowering effect of GCGR mAb was attenuated and the plasma insulin level, ß-cell area, and ß-cell dedifferentiation were not affected by GCGR mAb. Our results proved that glucagon induced ß-cell dedifferentiation under pathological conditions, and the effect was partially mediated by FoxO1. Our study reveals a novel cross talk between α- and ß-cells and is helpful to understand the pathophysiology of diabetes and discover new targets for diabetes treatment.NEW & NOTEWORTHY Glucagon-secreting pancreatic α-cells can interact with ß-cells. However, the long-term effect of glucagon on the function and phenotype of ß-cells has remained elusive. Our new finding shows that long-term glucagon induces ß-cell dedifferentiation in cultured ß-cells. FoxO1 inhibitor mimicks whereas glucagon signaling blockage by GCGR mAb reverses the effect of glucagon. In type 2 diabetic mice, GCGR mAb increases ß-cell area, improves ß-cell function, and inhibits ß-cell dedifferentiation, and the effect is partially mediated by FoxO1.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Camundongos , Animais , Receptores de Glucagon/metabolismo , Glucagon/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Desdiferenciação Celular , Camundongos Knockout , Insulina/metabolismo , Proteína Forkhead Box O1
4.
Peptides ; 131: 170349, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561493

RESUMO

Glucagon is an essential regulator of glucose homeostasis, particularly in type 2 diabetes (T2D). Blocking the glucagon receptor (GCGR) in diabetic animals and humans has been shown to alleviate hyperglycemia and increase circulating glucagon-like peptide-1 (GLP-1) levels. However, the origin of the upregulated GLP-1 remains to be clarified. Here, we administered high-fat diet + streptozotocin-induced T2D mice and diabetic db/db mice with REMD 2.59, a fully competitive antagonistic human GCGR monoclonal antibody (mAb) for 12 weeks. GCGR mAb treatment decreased fasting blood glucose levels and increased plasma GLP-1 levels in the T2D mice. In addition, GCGR mAb upregulated preproglucagon gene expression and the contents of gut proglucagon-derived peptides, particularly GLP-1, in the small intestine and colon. Notably, T2D mice treated with GCGR mAb displayed a higher L-cell density in the small intestine and colon, which was associated with increased numbers of LK-cells coexpressing GLP-1 and glucose-dependent insulinotropic polypeptide and reduced L-cell apoptosis. Furthermore, GCGR mAb treatment upregulated GLP-1 production in the pancreas, which was detected at lower levels than in the intestine. Collectively, these results suggest that GCGR mAb can increase intestinal GLP-1 production and L-cell number by enhancing LK-cell expansion and inhibiting L-cell apoptosis in T2D.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Receptores de Glucagon/genética , Animais , Apoptose/genética , Glicemia/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Jejum/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Proglucagon/genética , Proglucagon/metabolismo , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Transdução de Sinais , Estreptozocina/administração & dosagem
5.
Neurobiol Dis ; 132: 104588, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470105

RESUMO

Neuroinflammation may induce a phenotype switch to reactive astrogliosis in neurodegenerative disorders. The calcium-activated potassium channel (KCa3.1) is active in the phenotypic switch that occurs during astrogliosis in Alzheimer's disease and ischemic stroke. Here, transcriptome sequencing (RNA-Seq), immunohistochemistry, western blotting, pharmacological blockade, and calcium imaging were used to investigate astrocyte KCa3.1 activity in neuroinflammation, Tau accumulation, and insulin signaling deficits in male wild-type C57BL/6 and KCa3.1-/- knockout (KO) mice, and in primary astrocyte cultures. KCa3.1 deficiency in KO mice decreased lipopolysaccharide (LPS)-induced memory deficits, neuronal loss, glial activation, Tau phosphorylation, and insulin signaling deficits in vivo. KCa3.1 expression in astrocytes was associated with LPS-induced upregulation of the Orai1 store-operated Ca2+ channel protein. The KCa3.1 channel was found to regulate store-operated Ca2+ overload through an interaction with Orai1 in LPS-induced reactive astrocytes. The LPS-induced effects on KCa3.1 and Orai1 indirectly promoted astrogliosis-related changes via the PI3K/AKT/GSK3ß and NF-κB signaling pathways in vitro. Unbiased evaluation of RNA-Seq results for actively translated RNAs confirmed that substantial astrocyte diversity was associated with KCa3.1 deficiency. Our results suggest that KCa3.1 regulated astrogliosis-mediated neuroinflammation, Tau accumulation, and insulin signaling deficiency via PI3K/AKT/GSK3ß and NF-κB signaling pathways, and contributing to neuronal loss and memory deficits in this neuroinflammation mouse model.


Assuntos
Astrócitos/metabolismo , Gliose/metabolismo , Inflamação/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Neurochem Res ; 42(10): 2712-2729, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28497343

RESUMO

Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) contributes to spinal long-term potentiation (LTP) and pain hypersensitivity through activation of GluN2B-containing N-methyl-D-aspartate (GluN2B-NMDA) receptors in rats following spinal nerve ligation (SNL). However, the molecular mechanisms by which BDNF impacts upon GluN2B-NMDA receptors and spinal LTP still remain unclear. In this study, we first documented that Fyn kinase-mediated phosphorylation of GluN2B subunit at tyrosine 1472 (pGluN2BY1472) was involved in BDNF-induced spinal LTP and pain hypersensitivity in intact rats. Second, we revealed a co-localization of Fyn and GluN2B-NMDA receptor in cultured dorsal horn neurons, implying that Fyn is a possible intermediate kinase linking BDNF/TrkB signaling with GluN2B-NMDA receptors in the spinal dorsal horn. Furthermore, we discovered that both SNL surgery and intrathecal active Fyn could induce an increased expression of dorsal horn pGluN2BY1472, as well as pain hypersensitivity in response to von Frey filaments stimuli; and more importantly, all these actions were effectively abrogated by pre-treatment with either PP2 or ifenprodil to respectively inhibit Fyn kinase and GluN2B-NMDA receptors activity. Moreover, we found that intrathecal administration of BDNF scavenger TrkB-Fc prior to SNL surgery, could prevent the nerve injury-induced increase of both pFynY420 and pGluN2BY1472 expression, and also inhibit the mechanical allodynia in neuropathic rats. Collectively, these results suggest that Fyn kinase-mediated pGluN2BY1472 is critical for BDNF-induced spinal LTP and pain hypersensitivity in SNL rats. Therefore, the BDNF-Fyn-GluN2B signaling cascade in the spinal dorsal horn may constitute a key mechanism underlying central sensitization and neuropathic pain development after peripheral nerve injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Hiperalgesia/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo , Tirosina/metabolismo
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 38(5): 341-4, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25597081

RESUMO

According to the clinical requirements of cardiopulmonary bypass surgery, this paper established a simulation system for cardiac surgery which consists of venous reservoir, variable balance chamber, blood suction bag, ventricle suction bag, resistance valves, pressure gauges and tubings. Using the proposed system, perfusionists can mimic the implementation of pre-established surgery strategy, predict various abnormal conditions in the operation, and accordingly take the urgent actions so as to improve the success rate of surgery and to ensure the safety of patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos/instrumentação , Ponte Cardiopulmonar/instrumentação , Cateteres de Demora , Coração , Humanos , Sucção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA