Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Biology (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056676

RESUMO

Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.

2.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189140, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909632

RESUMO

FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.

3.
Autophagy ; : 1-16, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38726865

RESUMO

AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.

4.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617310

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.

5.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622115

RESUMO

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Assuntos
Proteínas de Ciclo Celular , Proteômica , Ciclo Celular/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Estabilidade Proteica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Mitose
6.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
7.
J Am Chem Soc ; 146(11): 7584-7593, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469801

RESUMO

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Assuntos
DNA Forma Z , Quimera de Direcionamento de Proteólise , Proteólise , Adenosina Desaminase/metabolismo , RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo
8.
EBioMedicine ; 101: 105026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417378

RESUMO

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Assuntos
Proteínas Hedgehog , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424044

RESUMO

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Assuntos
Neoplasias da Mama , Proteínas Inibidoras de Quinase Dependente de Ciclina , Humanos , Masculino , Pelve , Regiões Promotoras Genéticas , Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Inibidores de Proteínas Quinases
10.
Gut ; 73(7): 1156-1168, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191266

RESUMO

OBJECTIVE: Whether and how the PI3K-AKT pathway, a central node of metabolic homeostasis, is responsible for high-fat-induced non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain a mystery. Characterisation of AKT regulation in this setting will provide new strategies to combat HCC. DESIGN: Metabolite library screening disclosed that palmitic acid (PA) could activate AKT. In vivo and in vitro palmitoylation assay were employed to detect AKT palmitoylation. Diverse cell and mouse models, including generation of AKT1C77S and AKT1C224S knock-in cells, Zdhhc17 and Zdhhc24 knockout mice and Akt1C224S knock-in mice were employed. Human liver tissues from patients with NASH and HCC, hydrodynamic transfection mouse model, high-fat/high-cholesterol diet (HFHCD)-induced NASH/HCC mouse model and high-fat and methionine/choline-deficient diet (HFMCD)-induced NASH mouse model were also further explored for our mechanism studies. RESULTS: By screening a metabolite library, PA has been defined to activate AKT by promoting its palmitoyl modification, an essential step for growth factor-induced AKT activation. Biologically, a high-fat diet could promote AKT kinase activity, thereby promoting NASH and liver cancer. Mechanistically, palmitoyl binding anchors AKT to the cell membrane in a PIP3-independent manner, in part by preventing AKT from assembling into an inactive polymer. The palmitoyltransferases ZDHHC17/24 were characterised to palmitoylate AKT to exert oncogenic effects. Interestingly, the anti-obesity drug orlistat or specific penetrating peptides can effectively attenuate AKT palmitoylation and activation by restricting PA synthesis or repressing AKT modification, respectively, thereby antagonising liver tumorigenesis. CONCLUSIONS: Our findings elucidate a novel fine-tuned regulation of AKT by PA-ZDHHC17/24-mediated palmitoylation, and highlight tumour therapeutic strategies by taking PA-restricted diets, limiting PA synthesis, or directly targeting AKT palmitoylation.


Assuntos
Carcinoma Hepatocelular , Dieta Hiperlipídica , Lipoilação , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Humanos , Ácido Palmítico/metabolismo , Carcinogênese/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Masculino , Transdução de Sinais
11.
Cell Chem Biol ; 31(4): 776-791.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37751743

RESUMO

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

12.
Metab Brain Dis ; 38(8): 2627-2644, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837601

RESUMO

To elucidate the protective mechanism of lobetyolin on oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in BV2 microglial cells. The OGD/R model was established using a chemical modeling method to simulate in vivo brain ischemia in lobetyolin-pretreated BV2 cells. The optimum lobetyolin dosage, chemical concentration, and OGD/R modeling duration were screened. The changes in cell morphology were observed, and the levels of immune response-related factors, including tumor necrosis factor-α (TNF-α), interleukin-6, inducible nitric oxide synthase (iNOS), and cluster of differentiation (CD)206, were detected using the enzyme-linked immunosorbent assay. The expression of chemokine-like-factor-1 (CKLF1), hypoxia-inducible factor (HIF)-1α, TNF-α, and CD206, was detected using western blotting. The gene expression of M1 and M2 BV2 phenotype markers was assessed using quantitative polymerase chain reaction (qPCR). The localization of M1 and M2 BV2 markers was detected using immunofluorescence analysis. The results showed that lobetyolin could protect BV2 cells from OGD/R-induced damage. After OGD/R, CKLF1/C-C chemokine receptor type 4 (CCR4) levels increased in BV2 cells, whereas the CKLF1/CCR4 level was decreased due to lobetyolin pretreatment. Additionally, BV2 cells injured with OGD/R tended to be M1 type, but lobetyolin treatment shifted the phenotype of BV2 cells from M1 type to M2 type. Lobetyolin decreased the expression of TNF-α and HIF-1α but increased the expression of transforming growth factor-ß (TGF-ß) in BV2 cells, indicating a dose-effect relationship. The qPCR results showed that lobetyolin decreased the expression of CD16, CD32, and iNOS at the gene level and increased the expression of C-C-chemokine ligand-22 and TGF-ß. The immunofluorescence analysis showed that lobetyolin decreased CD16/CD32 levels and increased CD206 levels. Lobetyolin can protect BV2 cells from OGD/R-induced damage by regulating the phenotypic polarization of BV2 and decreasing inflammatory responses. Additionally, CKLF1/CCR4 may participate in regulating lobetyolin-induced polarization of BV2 cells via the HIF-1α pathway.


Assuntos
Oxigênio , Traumatismo por Reperfusão , Humanos , Oxigênio/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Glucose/metabolismo , Fenótipo , Traumatismo por Reperfusão/metabolismo , Quimiocinas/metabolismo , Reperfusão , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
13.
Mol Cell ; 83(19): 3520-3532.e7, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802025

RESUMO

Cyclic GMP-AMP synthase (cGAS) binds pathogenic and other cytoplasmic double-stranded DNA (dsDNA) to catalyze the synthesis of cyclic GMP-AMP (cGAMP), which serves as the secondary messenger to activate the STING pathway and innate immune responses. Emerging evidence suggests that activation of the cGAS pathway is crucial for anti-tumor immunity; however, no effective intervention method targeting cGAS is currently available. Here we report that cGAS is palmitoylated by ZDHHC9 at cysteines 404/405, which promotes the dimerization and activation of cGAS. We further identified that lysophospholipase-like 1 (LYPLAL1) depalmitoylates cGAS to compromise its normal function. As such, inhibition of LYPLAL1 significantly enhances cGAS-mediated innate immune response, elevates PD-L1 expression, and enhances anti-tumor response to PD-1 blockade. Our results therefore reveal that targeting LYPLAL1-mediated cGAS depalmitoylation contributes to cGAS activation, providing a potential strategy to augment the efficacy of anti-tumor immunotherapy.


Assuntos
Neoplasias , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Imunidade Inata/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
14.
J Am Chem Soc ; 145(40): 21871-21878, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774414

RESUMO

Methyl-CpG-binding protein 2 (MeCP2), a reader of DNA methylation, has been extensively investigated for its function in neurological and neurodevelopmental disorders. Emerging evidence indicates that MeCP2 exerts an oncogenic function in cancer; however, the endeavor to develop a MeCP2-targeted therapy remains a challenge. This work attempts to address it by introducing a methylated nucleotide-based targeting chimera termed methyl-proteolysis-targeting chimera (methyl-PROTAC). The methyl-PROTAC incorporates a methylated cytosine into an oligodeoxynucleotide moiety to recruit MeCP2 for targeted degradation in a von Hippel-Lindau- and proteasome-dependent manner, thus displaying antiproliferative effects in cancer cells reliant on MeCP2 overexpression. This selective cytotoxicity endows methyl-PROTAC with the capacity to selectively eliminate cancer cells that are addicted to the overexpression of the MeCP2 oncoprotein. Furthermore, methyl-PROTAC-mediated MeCP2 degradation induces apoptosis in cancer cells. These findings underscore the therapeutic potential of methyl-PROTAC to degrade undruggable epigenetic regulatory proteins. In summary, the development of methyl-PROTAC introduces an innovative strategy by designing a modified nucleotide-based degradation approach for manipulating epigenetic factors, thereby representing a promising avenue for the advancement of PROTAC-based therapeutics.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Nucleotídeos , Proteína 2 de Ligação a Metil-CpG/genética , Nucleotídeos/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Metilação de DNA
15.
Nat Cell Biol ; 25(7): 950-962, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37400498

RESUMO

The prolyl hydroxylation of hypoxia-inducible factor 1α (HIF-1α) mediated by the EGLN-pVHL pathway represents a classic signalling mechanism that mediates cellular adaptation under hypoxia. Here we identify RIPK1, a known regulator of cell death mediated by tumour necrosis factor receptor 1 (TNFR1), as a target of EGLN1-pVHL. Prolyl hydroxylation of RIPK1 mediated by EGLN1 promotes the binding of RIPK1 with pVHL to suppress its activation under normoxic conditions. Prolonged hypoxia promotes the activation of RIPK1 kinase by modulating its proline hydroxylation, independent of the TNFα-TNFR1 pathway. As such, inhibiting proline hydroxylation of RIPK1 promotes RIPK1 activation to trigger cell death and inflammation. Hepatocyte-specific Vhl deficiency promoted RIPK1-dependent apoptosis to mediate liver pathology. Our findings illustrate a key role of the EGLN-pVHL pathway in suppressing RIPK1 activation under normoxic conditions to promote cell survival and a model by which hypoxia promotes RIPK1 activation through modulating its proline hydroxylation to mediate cell death and inflammation in human diseases, independent of TNFR1.


Assuntos
Necroptose , Receptores Tipo I de Fatores de Necrose Tumoral , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Hidroxilação , Hipóxia , Prolina/metabolismo , Inflamação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
16.
Science ; 380(6652): 1372-1380, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384704

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo Energético , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Estresse Fisiológico , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo
17.
Neoplasia ; 42: 100912, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269817

RESUMO

N6-methyladenosine (m6A), the most abundant mRNA modification in mammalian cells, is responsible for mRNA stability and alternative splicing. The METTL3-METTL14-WTAP complex is the only methyltransferase for the m6A modification. Thus, regulation of its enzymatic activity is critical for the homeostasis of mRNA m6A levels in cells. However, relatively little is known about the upstream regulation of the METTL3-METTL14-WTAP complex, especially at the post-translational modification level. The C-terminal RGG repeats of METTL14 are critical for RNA binding. Therefore, modifications on these residues may play a regulatory role in its function. Arginine methylation is a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), among which PRMT1 preferentially methylates protein substrates with an arginine/glycine-rich motif. In addition, PRMT1 functions as a key regulator of mRNA alternative splicing, which is associated with m6A modification. To this end, we report that PRMT1 promotes the asymmetric methylation of two major arginine residues at the C-terminus of METTL14, and the reader protein SPF30 recognizes this modification. Functionally, PRMT1-mediated arginine methylation on METTL14 is likely essential for its function in catalyzing the m6A modification. Moreover, arginine methylation of METTL14 promotes cell proliferation that is antagonized by the PRMT1 inhibitor MS023. These results indicate that PRMT1 likely regulates m6A modification and promotes tumorigenesis through arginine methylation at the C-terminus of METTL14.


Assuntos
Arginina , Metiltransferases , Animais , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Arginina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
18.
Nat Commun ; 14(1): 2859, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208329

RESUMO

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Homeostase , Imunoterapia
19.
Nat Commun ; 14(1): 2806, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193698

RESUMO

Activation of the cGAS/STING innate immunity pathway is essential and effective for anti-tumor immunotherapy. However, it remains largely elusive how tumor-intrinsic cGAS signaling is suppressed to facilitate tumorigenesis by escaping immune surveillance. Here, we report that the protein arginine methyltransferase, PRMT1, methylates cGAS at the conserved Arg133 residue, which prevents cGAS dimerization and suppresses the cGAS/STING signaling in cancer cells. Notably, genetic or pharmaceutical ablation of PRMT1 leads to activation of cGAS/STING-dependent DNA sensing signaling, and robustly elevates the transcription of type I and II interferon response genes. As such, PRMT1 inhibition elevates tumor-infiltrating lymphocytes in a cGAS-dependent manner, and promotes tumoral PD-L1 expression. Thus, combination therapy of PRMT1 inhibitor with anti-PD-1 antibody augments the anti-tumor therapeutic efficacy in vivo. Our study therefore defines the PRMT1/cGAS/PD-L1 regulatory axis as a critical factor in determining immune surveillance efficacy, which serves as a promising therapeutic target for boosting tumor immunity.


Assuntos
Antígeno B7-H1 , Imunidade Inata , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Metilação , Imunidade Inata/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Metiltransferases/metabolismo
20.
Neoplasia ; 41: 100904, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148656

RESUMO

Circadian clock orchestrates the intergenic biochemical, physiological and behavioral changes to form an approximate 24h oscillation through the transcription-translation feedback loop (TTFL). Mechanistically, a heterodimer of transcriptional activator formed by BMAL1 and CLOCK, governs the expression of its transcriptional repressors, CRY, PER and REV-ERBα/ß proteins, thereby controlling more than 50 % of protein encoding genes in human. There is also increasing evidence showing that tumor microenvironment can disrupt specific clock gene functions to facilitate tumorigenesis. Although there is great progress in understanding the molecular mechanisms of the circadian clock, aging and cancer, elucidating their complex relationships among these processes remains challenging. Herein, the optimization of the chronochemotherapy regimen has not been justified yet for treatment of cancer. Here, we discuss the hypothesis of relocalization of chromatin modifiers (RCM) along with function(s) of the circadian rhythm on aging and carcinogenesis. We will also introduce the function of the chromatin remodeling as a new avenue for rejuvenation of competent tissues to combat aging and cancer.


Assuntos
Relógios Circadianos , Neoplasias , Humanos , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Envelhecimento/genética , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA