Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 182: 111-125, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763407

RESUMO

Bone cement is widely used in clinical with optimistic filling and mechanical properties. However, the setting time of bone cement is difficult to accurately control, and the existing bone cements exhibit limited therapeutic functionalities. In response to these challenges, we designed and synthesized Nd-doped whitlockite (Nd-WH), endowing bone cement with photothermal-responsive and fluorescence imaging capabilities. The doping amount and photothermal properties of Nd-doped whitlockite were studied, and the composite bone cement was prepared. The results showed that the setting time of bone cement could be regulated by near infrared irradiation, and the multiple functions of promoting osteogenic differentiation, antibacterial and anti-tumor could be realized by adjusting the power and irradiation time of near infrared. By incorporating Nd-doped whitlockite and bone cement, we developed an all-in-one strategy to achieve setting time control, enhanced osteogenic ability, tumor cell clearance, bacterial clearance, and bone tissue regeneration. The optimized physical and mechanical properties of composite bone cement ensure adaptability and plasticity. In vitro and in vivo experiments validated the effectiveness of this bone cement platform for bone repair, tumor cell clearance and bacterial clearance. The universal methods to regulate the setting time and function of bone cement by photothermal effect has potential in orthopedic surgery and is expected to be a breakthrough in the field of bone defect repair. Further research and clinical validation are needed to ensure its safety, efficacy and sustainability. STATEMENT OF SIGNIFICANCE: Bone cement is a valuable clinical material. However, the setting time of bone cement is difficult to control, and the therapeutic function of existing bone cement is limited. Various studies have shown that the bone repair capacity of bone cements can be enhanced by synergistic stimulatory effects in vivo and ex vivo. Unfortunately, most of the existing photothermal conversion materials are non-degradable and poorly biocompatible. This study provides a bone-like photothermal conversion material with photothermal response and fluorescence imaging properties, and constructed a platform for integrated regulation of the setting time of bone cement and diversification of its functions. Therefore, it helps to design multi-functional bone repair materials that are more convenient and effective in clinical operation.


Assuntos
Cimentos Ósseos , Raios Infravermelhos , Compostos de Magnésio , Fosfatos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Fosfatos/química , Fosfatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
2.
Nat Commun ; 14(1): 4967, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587150

RESUMO

Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.


Assuntos
Insuficiência Cardíaca , Proteínas de Homeodomínio , Hormônios Peptídicos , Fatores de Transcrição , Animais , Masculino , Camundongos , Angiotensina II , Fibroblastos , Coração , Camundongos Knockout
4.
J Mater Chem B ; 10(29): 5633-5643, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816162

RESUMO

Magnetic iron oxide nanoparticles have shown great research value in the field of nerve regeneration because of their characteristics of satisfactory material properties and their ability to be stimulated by an external magnetic field to enhance the function of all aspects. Nevertheless, the impact of magnetic iron oxide nanoparticles on nerve regeneration regulated by macrophage polarization has not been well studied, and it is also not clear whether the introduction of the magnetic field has a further effect. Therefore, mesoporous hollow Fe3O4 nanoparticles (MHFPs) were synthesized. We selected an alternating magnetic field (AMF) because it may confer a stronger effect on MHFPs as compared to a static magnetic field, and then explored the field's ability to induce macrophage polarization. Furthermore, the effects of this regulation on other neuro-associated cells were also explored. Our results suggest that MHFPs can efficiently induce polarization of macrophages at the concentration of 40 µg mL-1, upregulate the expression of related genes and cytokines, and further promote the proliferation of neural stem cells and the subsequent migration of vascular endothelial cells. These effects were significantly enhanced after the application of an AMF. This work also showed that the internalization of particles is the starting point for polarization regulation.


Assuntos
Células Endoteliais , Nanopartículas , Ativação de Macrófagos , Macrófagos , Campos Magnéticos
5.
Regen Biomater ; 9: rbac041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812348

RESUMO

Metal-based nanomaterials usually have broad-spectrum antibacterial properties, low biological toxicity and no drug resistance due to their intrinsic enzyme-like catalytic properties and external field (magnetic, thermal, acoustic, optical and electrical) responsiveness. Herein, iron oxide (Fe3O4) nanoparticles (IONPs) synthesized by us have good biosafety, excellent photothermal conversion ability and peroxidase-like catalytic activity, which can be used to construct a photothermal-enzymes combined antibacterial treatment platform. IONPs with peroxide-like catalytic activity can induce H2O2 to catalyze the production of •OH in a slightly acidic environment, thus achieving certain bactericidal effects and increasing the sensitivity of bacteria to heat. When stimulated by near-infrared light, the photothermal effect could destroy bacterial cell membranes, resulting in cleavage and inactivation of bacterial protein, DNA or RNA. Meanwhile, it can also improve the catalytic activity of peroxidase-like and promote IONPs to catalyze the production of more •OH for killing bacteria. After IONPs synergistic treatment, the antibacterial rate of Escherichia coli and Staphylococcus aureus reached nearly 100%. It also has an obvious killing effect on bacteria in infected wounds of mice and can effectively promote the healing of S. aureus-infected wounds, which has great application potential in clinical anti-infection treatment.

6.
J Mater Chem B ; 10(31): 6001-6008, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880798

RESUMO

The combination of photodynamic therapy (PDT) and fluorescence imaging provides a promising approach to theranostics. However, traditional photosensitizers (PSs) have low water solubility and lack active targeting ability. Our ingenious design used L-cys/ZnS:O (LZS) nanoparticles (NPs) modified with folic acid (FA), allowing them to easily enter tumor cells and accurately gather around the nucleus of cancer cells. L-Cysteine were used as intermediates, ZnS:O quantum dots and FA could be connected by a solid-state method and a coupling reaction. In doing so, the cytotoxicity of LZS NPs was further reduced, while the hydrophilicity and dispersibility were improved. Moreover, the as-synthesized FA@LZS NPs had a higher generation of reactive oxygen species (ROS) than commercial Ce6, and they killed HepG2 cells specifically in vitro. These findings give a clear way for the development of advanced PSs with homologous labeling functions. A template for NPs or other fluorophores modified by targeting groups is also provided.


Assuntos
Nanopartículas , Fotoquimioterapia , Cisteína , Ácido Fólico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Sulfetos , Compostos de Zinco
7.
Colloids Surf B Biointerfaces ; 210: 112220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34840029

RESUMO

Facilitating angiogenesis, reducing the formation of glial scar tissue, and the occurrence of a strong inflammatory response are of great importance for the repair of central nerve damage. In our previous study, a temperature-sensitive hydrogel grafted with bioactive isoleucine-lysine-valine-alanine-valine (IKVAV) peptide was prepared and it showed regular three-dimensional porous structure, rapid (de)swelling performance and good biological activity. Therefore, in this study, we used this hydrogel scaffold to treat for SCI to study the effect of it to facilitate angiogenesis, inhibit the differentiation and adhesion of keratinocytes, and further reduce the formation of glial scar tissue. The results reveal that the peptide hydrogel scaffold achieved excellent performance and can also promote the expression of angiogenic factors and reduce the secretion of pro-inflammatory factors to a certain extent. Particularly, it can also inhibit the formation of glial scar tissue and repair damaged tissue. The proposed strategy for developing this hydrogel scaffold provides a new insight into designing biomaterials for a broad range of applications in the tissue engineering of the central nervous system (CNS).


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Resinas Acrílicas , Animais , Peptídeos , Ratos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Alicerces Teciduais
8.
Biomaterials ; 280: 121288, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894585

RESUMO

Delayed injured nerve regeneration remains a clinical problem, partly ascribing to the lack of regulation of regenerative microenvironment, topographical cues, and blood nourishment. Functional electrospun conduits have been established as an efficacious strategy to facilitate nerve regeneration by providing structural guidance, regulating the regenerative immune microenvironment, and improving vascular regeneration. However, the synthetic polymers conventionally used to fabricate electrospinning scaffolds, such as poly(L-lactic acid), poly(glycolic acid), and poly(lactic-co-glycolic acid), can cause aseptic inflammation due to acidic degradation products. Therefore, a poly[3(S)-methyl-morpholine-2,5-dione-co-lactic] [P(MMD-co-LA)] containing alanine units with good mechanical properties and reduced acid degradation products, was obtained by melt ring-opening polymerization (ROP). Here, we aimed to explore the effect of oriented nanofiber/Deferoxamine (DFO, a hydrophilic angiogenic drug) scaffold in the rapid construction of a favorable regenerative microenvironment, including cell bridge, polarized vascular system, and immune microenvironment. In vitro studies have shown that the scaffold can sustainably release DFO, which accelerates the migration and tube formation of human umbilical vein endothelial cells (HUVECs), as well as the expression of genes related to angiogenesis. The physical clues provided by the arranged nanofibers can regulate the polarization of macrophages and reduce the expression of inflammatory factors. Furthermore, the in vivo results demonstrated a higher M2 polarization level of the oriented nanofibrous scaffold treatment group with reducedinflammation reaction in the injured nerve. Moreover, the in-situ release of DFO up-regulated the expression of HIF1-α and SDF-1α genes, as well as the expression of HIF1-α's target gene VEGF, further promoting revascularization and enhancing nerve regeneration at the defect site. The obtained results provide essential insights on accelerating the creation of the nerve regeneration microenvironment by combining the physiological processes of nerve regeneration with topographical cues and chemical signal induction.


Assuntos
Nanofibras , Desferroxamina , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos , Nanofibras/química , Regeneração Nervosa , Fenótipo , Poliésteres/química , Alicerces Teciduais/química
9.
Mater Sci Eng C Mater Biol Appl ; 116: 111258, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806302

RESUMO

Hydrogel has attracted great attention in the past few years as a widely used material for repairing central nerve damage. However, conventional hydrogel bio-scaffold, such as chitosan, gelatin, and sodium alginate, lack sufficient biological activity and have limited nerve repair capabilities. Therefore, to explore biologically active and intelligent hydrogel materials is particularly important and necessary for central nerve repair. Herein, we developed a temperature-sensitive hydrogel grafted with a bioactive peptide IKVAV (Ile-Lys-Val-Ala-Val, IKVAV). The hydrogel was prepared by copolymerization of N-propan-2-ylprop-2-enamide (NIPAM) and AC-PEG-IKVAV copolymers via reversible addition-fracture chain transfer (RAFT) polymerization, using polyethylene glycol (PEGDA) and N, N'-Methylenebisacrylamide (BISAM) as cross-linking agents. The prepared hydrogel scaffold demonstrates a series of excellent properties such as rapid (de)swelling performance, good biocompatibility, regular three-dimensional porous structure, and in particular good biological activity, which can guide cell fate and mediate neuron's differentiation. Therefore, the developed peptide hydrogel scaffold provides a new strategy for designing biomaterials that are widely used in tissue engineering for central nervous system injury.


Assuntos
Hidrogéis , Células-Tronco Neurais , Diferenciação Celular , Proliferação de Células , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis/farmacologia , Peptídeos , Temperatura , Engenharia Tecidual , Alicerces Teciduais
10.
Mol Cell Biochem ; 472(1-2): 241-251, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632611

RESUMO

BACKGROUND AND AIM: Secreted frizzled-related protein 2 (sFRP2) has been reported to be involved in cardiovascular diseases. However, its role in cardiac hypertrophy induced by pressure overload is still elusive. We aimed to examine the role of sFRP2 in the development of cardiac hypertrophy in vivo and in vitro. METHODS AND RESULTS: Following cardiac hypertrophy stimulated by aortic banding (AB), the expression of sFRP2 was downregulated in the hypertrophic ventricle. Adeno-associated virus 9 (AAV9) was injected through the tail vein to overexpress sFRP2 in the mouse myocardium. Overexpression of sFRP2 alleviated cardiomyocyte hypertrophy and interstitial fibrosis, as identified by the reduced cardiomyocyte cross-sectional area, heart weight/body weight ratio, and left ventricular (LV) collagen ratio. Additionally, sFRP2 decreased cardiomyocyte apoptosis induced by pressure overload. Western blot showed that sFRP2 prevented the expression of active ß-catenin. The Wnt/ß-catenin agonist LiCl (1 mmol/kg) abolished the inhibitory effects of sFRP2 on cardiac hypertrophy and apoptosis, as evidenced by the increased cross-sectional area and LV collagen ratio and the deterioration of echocardiographic data. CONCLUSION: Our study indicated that decreased sFRP2 levels were observed in failing mouse hearts. Overexpression of sFRP2 attenuated myocyte hypertrophy and interstitial fibrosis induced by hypertrophic stimuli by inhibiting the Wnt/ß-catenin pathway. We revealed that sFRP2 may be a promising therapeutic target for the development of cardiac remodeling.


Assuntos
Cardiomegalia/prevenção & controle , Proteínas de Membrana/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pressão , Ratos , Ratos Sprague-Dawley , Proteínas Wnt/genética , beta Catenina/genética
11.
Biomed Res Int ; 2020: 8593617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596387

RESUMO

BACKGROUND AND AIMS: Myocyte apoptosis plays a critical role in the development of doxorubicin- (DOX-) induced cardiotoxicity. In addition to its cardiotonic effect, laboratory evidence indicates that levosimendan can inhibit apoptosis, but its role in DOX-induced cardiac injury remains unclear. Therefore, the present study is aimed at exploring whether levosimendan could attenuate DOX-induced cardiotoxicity. METHODS: Levosimendan (1 mg/kg) was administered to mice through oral gavage once daily for 4 weeks, and the mice were also subjected to an intraperitoneal injection of DOX (5 mg/kg) or saline, once a week for 4 weeks, to create a chronic model of DOX-induced cardiotoxicity. A morphological examination and biochemical analysis were used to evaluate the effects of levosimendan. H9C2 cells were used to verify the protective role of levosimendan in vitro. And an Akt inhibitor was utilized to verify the cardioprotection of levosimendan. RESULTS: Levosimendan reduced the cardiac dysfunction and attenuated the myocardial apoptosis induced by DOX in vivo and in vitro. Levosimendan also inhibited the activation of phosphatase and tensin homolog (PTEN) and upregulated P-Akt expression both in vivo and in vitro. And inhibition of Akt abolished the cardioprotection of levosimendan in vitro. CONCLUSION: Levosimendan may protect against DOX-induced cardiotoxicity via modulation of the PTEN/Akt signaling pathway.


Assuntos
Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simendana/farmacologia , Animais , Cardiotônicos/farmacologia , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
12.
Acta Pharm Sin B ; 9(4): 690-701, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384530

RESUMO

Oxidative stress and cardiomyocyte apoptosis are involved in the pathogenesis of doxorubicin (DOX)-induced cardiotoxicity. Matrine is well-known for its powerful anti-oxidant and anti-apoptotic capacities. Our present study aimed to investigate the effect of matrine on DOX-induced cardiotoxicity and try to unearth the underlying mechanisms. Mice were exposed with DOX to generate DOX-induced cardiotoxicity or normal saline as control. H9C2 cells were used to verify the effect of matrine in vitro. DOX injection triggered increased generation of reactive oxygen species (ROS) and excessive cardiomyocyte apoptosis, which were significantly mitigated by matrine. Mechanistically, we found that matrine ameliorated DOX-induced uncoupling protein 2 (UCP2) downregulation, and UCP2 inhibition by genipin could blunt the protective effect of matrine on DOX-induced oxidative stress and cardiomyocyte apoptosis. Besides, 5'-AMP-activated protein kinase α2 (Ampkα2) deficiency inhibited matrine-mediated UCP2 preservation and abolished the beneficial effect of matrine in mice. Besides, we observed that matrine incubation alleviated DOX-induced H9C2 cells apoptosis and oxidative stress level via activating AMPKα/UCP2, which were blunted by either AMPKα or UCP2 inhibition with genetic or pharmacological methods. Matrine attenuated oxidative stress and cardiomyocyte apoptosis in DOX-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway, and it might be a promising therapeutic agent for the treatment of DOX-induced cardiotoxicity.

13.
Mol Cell Endocrinol ; 476: 27-36, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655602

RESUMO

C1q/tumor necrosis factor-related protein-3 (CTRP3) shows striking homologies of genomic structure to the adiponectin. In this study, we aimed to investigate the protective role of CTRP3 against sepsis-induced cardiomyopathy. Here, we overexpressed CTRP3 in myocardium by direct intramyocardial injection and constructed a model of lipopolysaccharide (LPS)-induced sepsis in mice. Our results demonstrated that cardiac-specific overexpression of CTRP3 remarkably attenuated myocardial dysfunction and increased the phosphorylation level of AMPKα during LPS-induced sepsis. The anti-inflammatory effects of CTRP3, as determined by decreased mRNA levels of TNF-α, IL-6 and a lower protein expression of phosphorylated NF-κB p65 and IκBα, was detected in mice following LPS treatment. Additionally, CTRP3 suppressed cardiac apoptosis induced by LPS in mice as indicated by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining and western blot for Cleaved-caspase3, Bax and Bcl-2. In conclusion, CTRP3 could protect against sepsis-induced myocardial dysfunction in mice. The cardioprotective effects of CTRP3 might be mediated by activating AMPKα signaling pathway and blunting inflammatory response and apoptosis.


Assuntos
Adipocinas/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Substâncias Protetoras/metabolismo , Sepse/complicações , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Ativação Enzimática , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais , Regulação para Cima
14.
Front Pharmacol ; 9: 122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497382

RESUMO

Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as ß-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend to target all the fibrosis-associated mechanisms, and do not hamper the progression of cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits, and beverages and had been proposed as attenuators of cardiac fibrosis in different models of cardiovascular diseases. Together with results found in the literature, we can show that some polyphenols exert anti-fibrotic and myocardial protective effects by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement in different animal models of cardiac fibrosis treated with some polyphenols and projects the future direction and therapeutic potential of polyphenols on cardiac fibrosis.

15.
Cell Physiol Biochem ; 45(1): 26-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310116

RESUMO

BACKGROUND/AIMS: Cardiac fibrosis, characterized by an unbalanced production and degradation of extracellular matrix components, is a common pathophysiology of multiple cardiovascular diseases. Recent studies suggested that endothelial to mesenchymal transition (EndMT) could be a source of activated fibroblasts and contribute to cardiac fibrosis. Here, the role of pioglitazone (PIO) in cardiac fibrosis and EndMT was elaborated. METHODS: Male C57BL/6 mice were subjected to aortic banding (AB), which was used to construct a model of pressure overload-induced cardiac hypertrophy. PIO and GW9662 was given for 4 weeks to detect the effects of PIO on EndMT. RESULTS: Our results showed PIO treatment attenuated cardiac hypertrophy, dysfunction and fibrosis response to pressure overload. Mechanistically, PIO suppressed the TGF-ß/Smad signaling pathway activated by 4-week AB surgery. Moreover, PIO dramatically inhibited EndMT in vivo and in vitro stimulated by pressure overload or TGF-ß. A selective antagonist of PPAR-γ, GW9662, neutralized the anti-fibrotic effect and abolished the inhibitory effect of EndMT during the treatment of PIO. CONCLUSION: Our data implied that PIO exerts an alleviative effect on cardiac fibrosis via inhibition of the TGF-ß/Smad signaling pathway and EndMT by activating PPAR-γ.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Miocárdio/patologia , Pressão , Tiazolidinedionas/farmacologia , Anilidas/farmacologia , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Ecocardiografia , Fibrose , Hemodinâmica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Pioglitazona , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Tiazolidinedionas/uso terapêutico , Fator de Crescimento Transformador beta/farmacologia , Vimentina/metabolismo
16.
Cell Death Dis ; 9(2): 102, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367637

RESUMO

Agonists of peroxisome proliferator-activated receptor gamma (PPAR-γ) can activate 5' AMP-activated protein kinase alpha (AMPKα) and exert cardioprotective effects. A previous study has demonstrated that rosmarinic acid (RA) can activate PPAR-γ, but its effect on cardiac remodeling remains largely unknown. Our study aimed to investigate the effect of RA on cardiac remodeling and to clarify the underlying mechanism. Mice were subjected to aortic banding to generate pressure overload induced cardiac remodeling and then were orally administered RA (100 mg/kg/day) for 7 weeks beginning 1 week after surgery. The morphological examination, echocardiography, and molecular markers were used to evaluate the effects of RA. To ascertain whether the beneficial effect of RA on cardiac fibrosis was mediated by AMPKα, AMPKα2 knockout mice were used. Neonatal rat cardiomyocytes and fibroblasts were separated and cultured to validate the protective effect of RA in vitro. RA-treated mice exhibited a similar hypertrophic response as mice without RA treatment, but had an attenuated fibrotic response and improved cardiac function after pressure overload. Activated AMPKα was essential for the anti-fibrotic effect of RA via inhibiting the phosphorylation and nuclear translocation of Smad3 in vivo and in vitro, and AMPKα deficiency abolished RA-mediated protective effects. Small interfering RNA against Ppar-γ (siPpar-γ) and GW9662, a specific antagonist of PPAR-γ, abolished RA-mediated AMPKα phosphorylation and alleviation of fibrotic response in vitro. RA attenuated cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling and PPAR-γ was required for the activation of AMPKα. RA might be a promising therapeutic agent against cardiac fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Miocárdio/patologia , Pressão , Transdução de Sinais , Proteína Smad3/metabolismo , Animais , Cardiotônicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Fibrose , Masculino , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Rosmarínico
17.
Cell Physiol Biochem ; 42(4): 1313-1325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700997

RESUMO

BACKGROUND/AIMS: An increase in oxidative stress has been implicated in the pathophysiology of pressure-overload induced cardiac hypertrophy. Nobiletin (NOB), extracted from the fruit peel of citrus, possesses anti-oxidative property. Our study aimed to investigate the protective role of NOB in the progression of cardiac hypertrophy in vivo and in vitro. METHODS: Mice received aortic banding (AB) operation to induce cardiac hypertrophy. Experimental groups were as follows: sham+vehicle (VEH/SH), sham+NOB (NOB/SH), AB+vehicle (VEH/AB), and AB+ NOB (NOB/AB). Animals (n = 15 per group) were treated with vehicle or NOB (50 mg/kg) for 4 weeks after disease onset. RESULTS: NOB prevented cardiac hypertrophy induced by aortic banding (AB), as assessed by the cross-sectional area of cardiomyocytes, heart weight-to-body weight ratio, gene expression of hypertrophic markers and cardiac function. In addition, NOB supplementation blunted the increased expression of NAPDH oxidase (NOX) 2 and NOX4 and mitigated endoplasmic reticulum (ER) stress and myocyte apoptosis in cardiac hypertrophy. Furthermore, NOB treatment attenuated the neonatal rat cardiomyocyte (NRCM) hypertrophic response stimulated by phenylephrine (PE) and alleviated ER stress. However, our data showed that NOB dramatically inhibited NOX2 expression but not NOX4 in vitro. Finally, we found that knockdown of NOX2 attenuated ER stress in NRCMs stimulated by PE. CONCLUSIONS: Inhibition of oxidative and ER stress by NOB in the myocardium may represent a potential therapy for cardiac hypertrophy. Moreover, there is a direct role of NOX2 in regulating ER stress stimulated by PE.


Assuntos
Antioxidantes/farmacologia , Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Flavonas/farmacologia , Coração/efeitos dos fármacos , Glicoproteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Animais , Aorta/cirurgia , Peso Corporal/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Progressão da Doença , Esquema de Medicação , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/antagonistas & inibidores , Fenilefrina/farmacologia , Cultura Primária de Células
18.
Diabetologia ; 60(6): 1126-1137, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258411

RESUMO

AIMS/HYPOTHESIS: Oxidative stress, inflammation and cell death are closely involved in the development of diabetic cardiomyopathy (DCM). C1q/tumour necrosis factor-related protein-3 (CTRP3) has anti-inflammatory properties but its role in DCM remains largely unknown. The aims of this study were to determine whether CTRP3 could attenuate DCM and to clarify the underlying mechanisms. METHODS: Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in Sprague-Dawley rats. Cardiomyocyte-specific CTRP3 overexpression was achieved using an adeno-associated virus system 12 weeks after STZ injection. RESULTS: CTRP3 expression was significantly decreased in diabetic rat hearts. Knockdown of CTRP3 in cardiomyocytes at baseline resulted in increased oxidative injury, inflammation and apoptosis in vitro. Cardiomyocyte-specific overexpression of CTRP3 decreased oxidative stress and inflammation, attenuated myocyte death and improved cardiac function in rats treated with STZ. CTRP3 significantly activated AMP-activated protein kinase α (AMPKα) and Akt (protein kinase B) in H9c2 cells. CTRP3 protected against high-glucose-induced oxidative stress, inflammation and apoptosis in vitro. AMPKα deficiency abolished the protective effects of CTRP3 in vitro and in vivo. Furthermore, we found that CTRP3 activated AMPKα via the cAMP-exchange protein directly activated by cAMP (EPAC)-mitogen-activated protein kinase kinase (MEK) pathway. CONCLUSIONS/INTERPRETATION: CTRP3 protected against DCM via activation of the AMPKα pathway. CTRP3 has therapeutic potential for the treatment of DCM.


Assuntos
Adipocinas/metabolismo , Morte Celular/fisiologia , Cardiomiopatias Diabéticas/metabolismo , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Morte Celular/genética , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Inflamação/genética , Masculino , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
19.
PPAR Res ; 2017: 5789714, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127304

RESUMO

Background. Peroxisome proliferator-activated receptor-α (PPAR-α) is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA), a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg) for 7 weeks beginning 1 week after aortic banding (AB) surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs) were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK3ß) and mitogen-activated protein kinases (MAPKs). BZA suppressed phenylephrine- (PE-) induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis.

20.
Int J Biol Sci ; 12(7): 861-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313499

RESUMO

BACKGROUND: AMPactivated protein kinase α (AMPKα) is closely involved in the process of cardiac hypertrophy. Asiatic acid (AA), a pentacyclic triterpene, was found to activate AMPKα in our preliminary experiment. However, its effects on the development of cardiac hypertrophy remain unclear. The present study was to determine whether AA could protect against cardiac hypertrophy. METHODS: Mice subjected to aortic banding were orally given AA (10 or 30mg/kg) for 7 weeks. In the inhibitory experiment, Compound C was intraperitoneally injected for 3 weeks after surgery. RESULTS: Our results showed that AA markedly inhibited hypertrophic responses induced by pressure overload or angiotensin II. AA also suppressed cardiac fibrosis in vivo and accumulation of collagen in vitro. The protective effects of AA were mediated by activation of AMPKα and inhibition of the mammalian target of rapamycin (mTOR) pathway and extracellular signal-regulated kinase (ERK) in vivo and in vitro. However, AA lost the protective effects after AMPKα inhibition or gene deficiency. CONCLUSIONS: AA protects against cardiac hypertrophy by activating AMPKα, and has the potential to be used for the treatment of heart failure.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Adenoviridae , Animais , Western Blotting , Ecocardiografia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA