Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(1): 97-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921259

RESUMO

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/-  mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Espectrina , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/patologia , Humanos , Espectrina/metabolismo , Quimiocina CXCL1
2.
Circ Res ; 130(7): 1038-1055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35196865

RESUMO

BACKGROUND: The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS: Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS: Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1ß levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS: These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/patologia , Fatores de Transcrição/metabolismo
3.
Eur J Pharmacol ; 909: 174401, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358482

RESUMO

SPTBN1 (spectrin beta, non-erythrocytic 1) has been linked to tumor progression and epithelial-mesenchymal transition (EMT). However, the role of SPTBN1 has yet to be investigated in breast cancer. This study aimed to evaluate the viability, growth, and migration ability of the breast cancer cell line MDA-MB-231 and BT549 using CCK-8 assay, xenograft models, and Transwell assays. The expression of SPTBN1, EMT-related genes, and miRNA21 in breast cancer cells and tissues were assessed by quantitative real-time polymerase chain reaction (qPCR) and Western blot. SPTBN1 staining of breast cancer tissues was analyzed by the Human Protein Atlas databases. Both chromatin immunoprecipitation qPCR and immunofluorescence were performed to detect how SPTBN1 regulates miRNA21. Our results showed that the expression of SPTBN1 in primary breast cancer tumors was dramatically lower than that in normal tissues and that lower levels of SPTBN1 were associated with significantly shorter progression-free survival. We also discovered that the loss of SPTBN1 promotes EMT, the viability of MDA-MB-231 and BT549 in vitro, and the growth of MDA-MB-231 tumor xenografts in vivo by upregulating miR-21 level. Furthermore, loss of SPTBN1-mediated miR-21 upregulation was dependent on the stability and nuclear translocation of NF-κB p65. Therefore, SPTBN1 is a pivotal regulator that inhibits EMT and the growth of breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/epidemiologia , Espectrina/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EBioMedicine ; 51: 102617, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911270

RESUMO

The transcription factor Bach1 impairs angiogenesis after ischemic injury by suppressing Wnt/ß-catenin signaling; however, the specific domains responsible for the anti-angiogenic effects of Bach1 remain unclear. This study determined the role of the BTB domain of Bach1 in ischemic angiogenesis. Bach1 is highly expressed in circulating endothelial cells from acute myocardial infarction patients and is the early induction gene after ischemia. Mice were treated with adenoviruses coding for GFP (AdGFP), Bach1 (AdBach1), or a Bach1 mutant lacking the BTB domain (AdBach1-ΔBTB) after surgically induced hind-limb ischemia. Measures of blood-flow recovery, capillary density, and the expression of vascular endothelial growth factor (VEGF) and heme oxygenase-1 (HO-1) were significantly lower and ROS levels were higher in the AdBach1 group, but not in AdBach1-ΔBTB animals. Furthermore, transfection with AdBach1, but not AdBach1-ΔBTB, in human endothelial cells was associated with significant declines in 1) capillary density and hemoglobin content in the Matrigel-plug assay, 2) proliferation, migration, tube formation, and VEGF and HO-1 expression in endothelial cells. Bach1 binds directly with TCF4, and this interaction is mediated by residues 81-89 of the Bach1 BTB domain and the N-terminal domain of TCF4. Bach1, but not Bach1-ΔBTB, also co-precipitated with histone deacetylase 1 (HDAC1), while the full-length HDAC1 proteins, but not HDAC1 mutants lacking the protein-interaction domain, co-precipitated with Bach1. Collectively, these results demonstrate that the anti-angiogenic activity of Bach1 is crucially dependent on molecular interactions that are mediated by the protein's BTB domain, and this domain could be a drug target for angiogenic therapy.


Assuntos
Domínio BTB-POZ , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neovascularização Fisiológica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Modelos Animais de Doenças , Células Endoteliais , Genes Reporter , Histona Desacetilase 1 , Humanos , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Via de Sinalização Wnt
5.
Cancer Lett ; 445: 45-56, 2019 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-30654010

RESUMO

Transcriptional factor BTB and CNC homology 1 (Bach1) has been linked to tumor progression and metastasis, but the mechanisms underlying the effects of Bach1 on tumor growth and metastasis are largely uncharacterized. Here, we report that Bach1 expression was significantly higher in human epithelial ovarian cancer (EOC) tissues than in normal ovarian tissues and that higher levels of Bach1 were associated with tumor stage and poorer overall and progression-free survival. We found that Bach1 enhanced the expression of epithelial-mesenchymal transition (EMT) genes, including Slug and Snail, and promoted cell migration by recruiting HMGA2 in the human EOC cell line A2780. Bach1 overexpression enhanced and Bach1 knockout reduced the expression of Slug and the metastasis of EOC cells in a tumor metastasis mouse model. Bach1 expression was positively correlated with Slug and HMGA2 expression in human ovarian cancer tissues. In addition, Bach1 activated p-AKT and p-p70S6K, increased the expression of cyclin D1, and promoted the growth of ovarian cancer cells in vitro and tumor xenografts in vivo. Together, our findings reveal that Bach1 enhances tumor growth and recruits HMGA2 to promote EMT and ovarian cancer metastasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinoma Epitelial do Ovário/patologia , Proteína HMGA2/metabolismo , Neoplasias Ovarianas/patologia , Regulação para Cima , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Análise de Sobrevida
6.
Oxid Med Cell Longev ; 2018: 1347969, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370001

RESUMO

The transcription factor BTB and CNC homology 1 (Bach1) is widely expressed in most mammalian tissues and functions primarily as a transcriptional suppressor by heterodimerizing with small Maf proteins and binding to Maf recognition elements in the promoters of targeted genes. It has a key regulatory role in the production of reactive oxygen species, cell cycle, heme homeostasis, hematopoiesis, and immunity and has been shown to suppress ischemic angiogenesis and promote breast cancer metastasis. This review summarizes how Bach1 controls these and other cellular and physiological and pathological processes. Bach1 expression and function differ between different cell types. Thus, therapies designed to manipulate Bach1 expression will need to be tightly controlled and tailored for each specific disease state or cell type.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doença , Animais , Fatores de Transcrição de Zíper de Leucina Básica/química , Humanos , Imunidade , Modelos Biológicos , Estresse Oxidativo , Substâncias Protetoras/metabolismo
7.
IUBMB Life ; 68(12): 963-970, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27797149

RESUMO

Reactive oxygen species (ROS) and redox homeostasis have a pivotal role in the maintenance of stem cell pluripotency and in stem cell self-renewal; however, the mechanisms by which ROS regulate the self-renewal of stem cells have not been thoroughly studied. Here, we evaluated the role of the ROS produced by NADPH oxidase 2 (Nox2) and NADPH oxidase 4 (Nox4) in the self-renewal and stemness of murine induced-pluripotent stem cells (miPSCs). Targeted silencing of Nox2 or Nox4 reduced both NADPH oxidase activity and intracellular ROS levels, as well as alkaline phosphatase activity, the total number of miPSCs, the expression of insulin-like growth factor-1 (IGF-1), IGF-1 receptor, and the phosphorylation of extracellular signal regulated kinase (ERK) 1/2. Nox2/Nox4 overexpression or low, nontoxic concentration of H2 O2 increased cell proliferation in miPSCs. Furthermore, expression of the stemness genes Sox2 and Oct4 was lower in Nox2/Nox4-deficient miPSCs, and higher in Nox2/Nox4-overexpressing miPSCs, than in miPSCs with normal levels of Nox2/Nox4 expression. Collectively, these results suggest that Nox2- and Nox4-derived ROS contribute to stem cell pluripotency maintenance and self-renewal. © 2016 IUBMB Life, 68(12):963-970, 2016.


Assuntos
Autorrenovação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Camundongos , NADPH Oxidase 2 , NADPH Oxidase 4 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Sci Rep ; 6: 33737, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27642005

RESUMO

Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2(-/-)) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2(-/-) cells but increased in both WT and Nox2(-/-) miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2(-/-) miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs.


Assuntos
Artérias/enzimologia , Diferenciação Celular , Células Endoteliais/enzimologia , Células-Tronco Pluripotentes Induzidas/enzimologia , NADPH Oxidase 2/biossíntese , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Artérias/citologia , Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Knockout , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Notch/genética
9.
Oxid Med Cell Longev ; 2016: 6234043, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057283

RESUMO

The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases.


Assuntos
Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Pontos de Checagem do Ciclo Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Extremidades/patologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos
10.
Circ Res ; 117(4): 364-375, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26123998

RESUMO

RATIONALE: Wnt/ß-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. OBJECTIVE: This study evaluated the role of Bach1 in angiogenesis and Wnt/ß-catenin signaling. METHODS AND RESULTS: Hind-limb ischemia was surgically induced in Bach1(-/-) mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/ß-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of ß-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and ß-catenin, as well as ß-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. CONCLUSIONS: Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/ß-catenin signaling by disrupting the interaction between ß-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Via de Sinalização Wnt , beta Catenina/metabolismo , Acetilação , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Células HEK293 , Membro Posterior , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA