Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Neurosci ; 74(1): 24, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386166

RESUMO

Previous research has found that an adaptive response to ferroptosis involving glutathione peroxidase 4 (GPX4) is triggered after intracerebral hemorrhage. However, little is known about the mechanisms underlying adaptive responses to ferroptosis. To explore the mechanisms underlying adaptive responses to ferroptosis after intracerebral hemorrhage, we used hemin-treated HT22 cells to mimic brain injury after hemorrhagic stroke in vitro to evaluate the antioxidant enzymes and performed bioinformatics analysis based on the mRNA sequencing data. Further, we determined the expression of GSTO2 in hemin-treated hippocampal neurons and in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH) by using Western blot. After hemin treatment, the antioxidant enzymes GPX4, Nrf2, and glutathione (GSH) were upregulated, suggesting that an adaptive response to ferroptosis was triggered. Furthermore, we performed mRNA sequencing to explore the underlying mechanism, and the results showed that 2234 genes were differentially expressed. Among these, ten genes related to ferroptosis (Acsl1, Ftl1, Gclc, Gclm, Hmox1, Map1lc3b, Slc7a11, Slc40a1, Tfrc, and Slc39a14) were altered after hemin treatment. In addition, analysis of the data retrieved from the GO database for the ten targeted genes showed that 20 items on biological processes, 17 items on cellular components, and 19 items on molecular functions were significantly enriched. Based on the GO data, we performed GSEA and found that the glutathione metabolic process was significantly enriched in the hemin phenotype. Notably, the expression of glutathione S-transferase omega (GSTO2), which is involved in glutathione metabolism, was decreased after hemin treatment, and overexpression of Gsto2 decreased lipid reactive oxygen species level in hemin-exposed HT22 cells. In addition, the expression of GSTO2 was also decreased in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH). The decreased expression of GSTO2 in the glutathione metabolic process may be involved in ferroptotic neuronal injury following hemorrhagic stroke.


Assuntos
Glutationa Transferase , Acidente Vascular Cerebral Hemorrágico , Animais , Camundongos , Antioxidantes , Hemorragia Cerebral/genética , Modelos Animais de Doenças , Glutationa , Glutationa Transferase/genética , Hemina/farmacologia , Neurônios , RNA Mensageiro
2.
BMC Vet Res ; 19(1): 209, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845761

RESUMO

BACKGROUND: The infection of bovine mammary glands by pathogenic microorganisms not only causes animal distress but also greatly limits the development of the dairy industry and animal husbandry. A deeper understanding of the host's initial response to infection may increase the accuracy of selecting drug-resistant animals or facilitate the development of new preventive or therapeutic intervention strategies. In addition to their functions of milk synthesis and secretion, bovine mammary epithelial cells (BMECs) play an irreplaceable role in the innate immune response. To better understand this process, the current study identified differentially expressed long noncoding lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in BMECs exposed to Escherichia coli lipopolysaccharide (LPS) and further explored the functions and interactions of these lncRNAs and mRNAs. RESULTS: In this study, transcriptome analysis was performed by RNA sequencing (RNA-seq), and the functions of the DE mRNAs and DE lncRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, we constructed a modulation network to gain a deeper understanding of the interactions and roles of these lncRNAs and mRNAs in the context of LPS-induced inflammation. A total of 231 DE lncRNAs and 892 DE mRNAs were identified. Functional enrichment analysis revealed that pathways related to inflammation and the immune response were markedly enriched in the DE genes. In addition, research results have shown that cell death mechanisms, such as necroptosis and pyroptosis, may play key roles in LPS-induced inflammation. CONCLUSIONS: In summary, the current study identified DE lncRNAs and mRNAs and predicted the signaling pathways and biological processes involved in the inflammatory response of BMECs that might become candidate therapeutic and prognostic targets for mastitis. This study also revealed several possible pathogenic mechanisms of mastitis.


Assuntos
Doenças dos Bovinos , Mastite , RNA Longo não Codificante , Feminino , Animais , Bovinos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica/veterinária , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/veterinária , Mastite/veterinária , Doenças dos Bovinos/metabolismo
3.
Protein Pept Lett ; 30(9): 783-793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37587823

RESUMO

BACKGROUND: BSN-37, a novel antimicrobial peptide (AMP) containing 37 amino acid residues isolated from the bovine spleen, has not only antibacterial activity but also immunomodulatory activity. Recent evidence shows that long non-coding RNAs (lncRNAs) play an important role in regulating the activation and function of immune cells. The purpose of this experiment was to investigate the lncRNA and mRNA expression profile of mouse macrophages RAW264.7 stimulated by bovine antimicrobial peptide BSN-37. METHODS: The whole gene expression microarray was used to detect the differentially expressed lncRNA and mRNA between antimicrobial peptide BSN-37 activated RAW264.7 cells and normal RAW264.7 cells. KEGG pathway analysis and GO function annotation analysis of differentially expressed lncRNAs and mRNA were carried out. Eight kinds of lncRNAs and nine kinds of mRNA with large differences were selected for qRT-PCR verification, respectively. RESULTS: In the current study, we found that 1294 lncRNAs and 260 mRNAs were differentially expressed between antibacterial peptide BSN-37 treatment and control groups. Among them, Bcl2l12, Rab44, C1s, Cd101 and other genes were associated with immune responses and were all significantly up-regulated. Mest and Prkcz are related to cell growth, and other genes are related to glucose metabolism and lipid metabolism. In addition, some immune-related terms were also found in the GO and KEGG analyses. At the same time, real-time quantitative PCR was used to verify selected lncRNA and mRNA with differential expression. The results of qRT-PCR verification were consistent with the sequencing results, indicating that our data were reliable. CONCLUSION: This study provides the lncRNA and mRNA expression profiles of RAW264.7 macrophages stimulated by antimicrobial peptide BSN-37 and helps to provide a reference value for subsequent studies on lncRNA regulation of antimicrobial peptide BSN-37 immune function.


Assuntos
RNA Longo não Codificante , Camundongos , Animais , Bovinos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peptídeos Antimicrobianos , Macrófagos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
4.
Gastroenterol Res Pract ; 2022: 5403423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747248

RESUMO

Objective: To investigate the diagnostic gene biomarkers for hepatocellular carcinoma (HCC) and identify the immune cell infiltration characteristics in this pathology. Methods: Five gene expression datasets were obtained through Gene Expression Omnibus (GEO) portal. After batch effect removal, differentially expressed genes (DEGs) were conducted between 209 HCC and 146 control tissues and functional correlation analyses were performed. Two machine learning algorithms were used to develop diagnostic signatures. The discriminatory ability of the gene signature was measured by AUC. The expression levels and diagnostic value of the identified biomarkers in HCC were further validated in three independent external cohorts. CIBERSORT algorithm was adopted to explore the immune infiltration of HCC. A correlation analysis was carried out between these diagnostic signatures and immune cells. Results: A total of 375 DEGs were identified. GPC3, ACSM3, SPINK1, COL15A1, TP53I3, RRAGD, and CLDN10 were identified as the early diagnostic signatures of HCC and were all validated in external cohorts. The corresponding results of AUC presented excellent discriminatory ability of these feature genes. The immune cell infiltration analysis showed that multiple immune cells associated with these biomarkers may be involved in the development of HCC. Conclusion: This study indicates that GPC3, ACSM3, SPINK1, COL15A1, TP53I3, RRAGD, and CLDN10 are potential biomarkers associated with immune infiltration in HCC. Combining these genes can be used for early detection of HCC and evaluating immune cell infiltration. Further studies are needed to explore their roles underlying the occurrence of HCC.

5.
Cell Biol Int ; 46(1): 12-33, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34549863

RESUMO

Breast cancer (BC) is a very common cancer among women and one of the primary causes of death in women worldwide. Because BC has different molecular subtypes, the challenges associated with targeted therapy have increased significantly, and the identification of new therapeutic targets has become increasingly urgent. Blocking apoptosis and inhibiting cell death are important characteristics of malignant tumours, including BC. Under adverse conditions, including exposure to antitumour therapy, inhibition of cell death programmes can promote cancerous transformation and the survival of cancer cells. Therefore, inducing cell death in cancer cells is fundamentally important and provides new opportunities for potential therapeutic interventions. Lytic forms of cell death, primarily pyroptosis, necroptosis and ferroptosis, are different from apoptosis owing to their characteristic lysis, that is, the production of cellular components, to guide beneficial immune responses, and the application of lytic cell death (LCD) in the field of tumour therapy has attracted considerable interest from researchers. The latest clinical research results confirm that lytic death signalling cascades involve the BC cell immune response and resistance to therapies used in clinical practice. In this review, we discuss the current knowledge regarding the various forms of LCD, placing a special emphasis on signalling pathways and their implications in BC, which may facilitate the development of novel and optimal strategies for the clinical treatment of BC.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morte Celular Regulada/efeitos dos fármacos , Animais , Antineoplásicos/efeitos adversos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Ferroptose/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Necroptose/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Transdução de Sinais
6.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32457283

RESUMO

Halofuginone (HF) is an extract from the widely used traditional Chinese medicine (TCM) Dichroa febrifuga that facilitates the recovery of wounds and attenuates hepatic fibrosis. However, the role of HF in the epithelial-mesenchymal transition (EMT) of IPEC-J2 cells remains unclear. The current study explored the anti-EMT effect of HF in IPEC-J2 cells and illustrates its molecular mechanism. Transforming growth factor ß1 (TGF-ß1), as a recognized profibrogenic cytokine, decreased the level of the epithelial marker E-cadherin and increased the level of the mesenchymal markers, such as N-cadherin, fibronectin (FN), vimentin (Vim), and α-smooth muscle actin (α-SMA), in IPEC-J2 cells depending on the exposure time and dose. HF markedly prevented the EMT induced by TGF-ß1. Dissection of the mechanism revealed that HF inhibited IPEC-J2 cell EMT via modulating the phosphorylation of SMAD2/3 and the SMAD2/3-SMAD4 complex nuclear translocation. Furthermore, HF could promote the phosphorylation of eukaryotic translation initiation factor-2α (eIF2α), which modulates the SMAD signaling pathway. These results suggested that HF inhibits TGF-ß1-induced EMT in IPEC-J2 cells through the eIF2α/SMAD signaling pathway. Our findings suggest that HF can serve as a potential anti-EMT agent in intestinal fibrosis therapy.


Assuntos
Antineoplásicos/farmacologia , Enterócitos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Actinas/genética , Actinas/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Enterócitos/citologia , Enterócitos/metabolismo , Transição Epitelial-Mesenquimal/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Suínos , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/genética , Vimentina/metabolismo
7.
Asian Pac J Cancer Prev ; 15(8): 3629-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24870769

RESUMO

BACKGROUND: Glioblastoma (GBM) is an immunosuppressive tumor whose median survival time is only 12- 15 months, and patients with GBM have a uniformly poor prognosis. It is known that heredity contributes to formation of glioma, but there are few genetic studies concerning GBM. MATERIALS AND METHODS: We genotyped six tagging SNPs (tSNP) in Han Chinese GBM and control patients. We used Microsoft Excel and SPSS 16.0 statistical package for statistical analysis and SNP Stats to test for associations between certain tSNPs and risk of GBM in five different models. ORs and 95%CIs were calculated for unconditional logistic-regression analysis with adjustment for age and gender. The SHEsis software platform was applied for analysis of linkage disequilibrium, haplotype construction, and genetic associations at polymorphism loci. RESULTS: We found rs891835 in CCDC26 to be associated with GBM susceptibility at a level of p=0.009. The following genotypes of rs891835 were found to be associated with GBM risk in four different models of gene action: i) genotype GT (OR=2.26; 95%CI, 1.29-3.97; p=0.019) or GG (OR=1.33; 95%CI, 0.23-7.81; p=0.019) in the codominant model; ii) genotypes GT and GG (OR=2.18; 95%CI, 1.26-3.78; p=0.0061) in the dominant model; iii) GT (OR=2.24; 95%CI, 1.28-3.92; p=0.0053) in the overdominant model; iv) the allele G of rs891835 (OR=1.85; 95%CI, 1.14-3.00; p=0.015) in the additive model. In addition, "CG" and "CGGAG" were found by haplotype analysis to be associated with increased GBM risk. In contrast, genotype GG of CCDC26 rs6470745 was associated with decreased GBM risk (OR=0.34; 95%CI, 0.12-1.01; p=0.029) in the recessive model. CONCLUSIONS: Our results, combined with those from previous studies, suggest a potential genetic contribution of CCDC26 to GBM progression among Han Chinese.


Assuntos
Povo Asiático/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA