Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Cell Mol Immunol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164536

RESUMO

The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.

2.
J Hematol Oncol ; 17(1): 46, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886806

RESUMO

The Wnt/ß-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/ß-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/ß-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/ß-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/ß-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.


Assuntos
Carcinogênese , Neoplasias , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Animais , beta Catenina/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos
3.
Proc Natl Acad Sci U S A ; 121(25): e2316551121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865260

RESUMO

The NLRP3 inflammasome, a pivotal component of innate immunity, has been implicated in various inflammatory disorders. The ubiquitin-editing enzyme A20 is well known to regulate inflammation and maintain homeostasis. However, the precise molecular mechanisms by which A20 modulates the NLRP3 inflammasome remain poorly understood. Here, our study revealed that macrophages deficient in A20 exhibit increased protein abundance and elevated mRNA level of NIMA-related kinase 7 (NEK7). Importantly, A20 directly binds with NEK7, mediating its K48-linked ubiquitination, thereby targeting NEK7 for proteasomal degradation. Our results demonstrate that A20 enhances the ubiquitination of NEK7 at K189 and K293 ubiquitinated sites, with K189 playing a crucial role in the binding of NEK7 to A20, albeit not significantly influencing the interaction between NEK7 and NLRP3. Furthermore, A20 disrupts the association of NEK7 with the NLRP3 complex, potentially through the OTU domain and/or synergistic effect of ZnF4 and ZnF7 motifs. Significantly, NEK7 deletion markedly attenuates the activation of the NLRP3 inflammasome in A20-deficient conditions, both in vitro and in vivo. This study uncovers a mechanism by which A20 inhibits the NLRP3 inflammasome.


Assuntos
Inflamassomos , Quinases Relacionadas a NIMA , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/metabolismo , Animais , Camundongos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Células HEK293 , Camundongos Knockout , Ligação Proteica
4.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734035

RESUMO

The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/patologia , Animais , Carcinogênese/imunologia
5.
MedComm (2020) ; 5(5): e539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680520

RESUMO

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

6.
Expert Opin Ther Targets ; 28(3): 221-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646899

RESUMO

INTRODUCTION: The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED: This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION: The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Neoplasias , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Mutação , Serina-Treonina Quinases TOR/metabolismo
7.
J Hematol Oncol ; 17(1): 13, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520006

RESUMO

Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Citocinas/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
8.
Genes Dis ; 11(3): 100989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303927

RESUMO

Ovarian cancer is the tumor with the highest mortality among gynecological malignancies. Studies have confirmed that paclitaxel chemoresistance is associated with increased infiltration of tumor-associated macrophages (TAMs) in the microenvironment. Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) plays a key role in regulating the number and differentiation of macrophages in certain solid tumors. There are few reports on the effects of targeted inhibition of CSF-1R in combination with chemotherapy on ovarian cancer and the tumor microenvironment. Here, we explored the antitumor efficacy and possible mechanisms of the CSF - 1R inhibitor pexidartinib (PLX3397) when combined with the first-line chemotherapeutic agent paclitaxel in the treatment of ovarian cancer. We found that CSF-1R is highly expressed in ovarian cancer cells and correlates with poor prognosis. Treatment by PLX3397 in combination with paclitaxel significantly inhibited the growth of ovarian cancer both in vitro and in vivo. Blockade of CSF-1R altered the macrophage phenotype and reprogrammed the immunosuppressive cell population in the tumor microenvironment.

10.
Med Res Rev ; 44(4): 1768-1799, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323921

RESUMO

Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Animais , Adjuvantes de Vacinas/farmacologia , Adjuvantes de Vacinas/química , Transdução de Sinais/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Vacinas contra COVID-19/imunologia
11.
Cell Prolif ; 57(4): e13570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905494

RESUMO

Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.


Assuntos
Neoplasias Pulmonares , Células Supressoras Mieloides , Fosfatidilcolinas , Animais , Camundongos , Cisplatino/farmacologia , Leucotrieno B4 , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
13.
MedComm (2020) ; 4(6): e424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929016

RESUMO

Patients with central nervous system (CNS) lymphoma face limited treatment options and poor treatment outcomes, emphasizing the urgent need for effective therapeutic strategies. One limiting factor contributing to the suboptimal efficacy is the inadequate penetration of most treatment drugs across the blood-brain barrier (BBB). Recent insights into the pathophysiology of CNS lymphoma have identified the Bruton's tyrosine kinase (BTK) signaling pathway as a potential target. Some clinical trials have shown impressive responses to BTK inhibitors in CNS lymphoma. However, currently approved BTK inhibitors have low BBB penetration rates, limiting their efficacy. In this study, we discovered that JDB175, a novel and highly selective BTK inhibitor, exhibits excellent BBB penetration capabilities and demonstrates favorable activity in a mouse model of CNS lymphoma while showing no significant signs of toxicity. JDB175 effectively inhibits the BTK signaling pathway in human lymphoma cells, suppressing their proliferation, inducing cell cycle arrest, and promoting apoptosis. The significance of this study lies in addressing the critical unmet medical need for effective treatments for CNS lymphoma. This finding indicates a promising avenue for improved treatments in CNS lymphoma, potentially opening doors for further clinical investigation and therapeutic advancements.

14.
Mol Cancer ; 22(1): 172, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853437

RESUMO

Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
15.
Adv Sci (Weinh) ; 10(28): e2207518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37585564

RESUMO

Recently, the major challenge in treating osteosarcoma patients is the metastatic disease, most commonly in the lungs. However, the underlying mechanism of recurrence and metastasis of osteosarcoma after surgical resection of primary tumor remains unclear. This study aims to investigate whether the pulmonary metastases characteristic of osteosarcoma is associated with surgical treatment and whether surgery contributes to the formation of pre-metastatic niche in the distant lung tissue. In the current study, the authors observe the presence of circulating tumor cells in patients undergoing surgical resection of osteosarcoma which is correlated to tumor recurrence. The pulmonary infiltrations of neutrophils and Gr-1+ myeloid cells are characterized to form a pre-metastatic niche upon the exposure of circulating tumor cells after surgical resection. It is found that mitochondrial damage-associated molecular patterns released from surgical resection contribute to the formation of pre-metastatic niche in lung through IL-1ß secretion. This study reveals that surgical management for osteosarcoma, irrespective of the primary tumor, might promote the formation of postoperative pre-metastatic niche in lung which is with important implications for developing rational therapies during peri-operative period.

16.
Oncogene ; 42(37): 2737-2750, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567973

RESUMO

The tumor-associated macrophage (TAM) is the most abundant group of immune cells in the tumor microenvironment (TME), which plays a critical role in the regulation of tumor progression and treatment resistance. Based on different polarization status, TAMs may also induce antitumor immune responses or immunosuppression. The present study identified JMJD6 (Jumonji domain-containing 6) as a novel modulator of TAM activation, the upregulation of which was associated with the immunosuppressive activities of TAMs. JMJD6 deficiency attenuated the growth of both Lewis lung carcinoma (LLC) tumors and B16F10 melanomas by reversing M2-like activation of macrophages, and sensitized tumors to immune checkpoint blockades (ICBs). Moreover, the JMJD6-induced inhibition of M2 polarization was potentially mediated by the STAT3/IL-10 signaling. These findings highlight the regulatory activities of JMJD6 in TAM polarization, and the therapeutic potential of JMJD6/STAT3/IL-10 axis blockades to enhance the efficacy of ICBs in cancer treatment.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Neoplasias , Macrófagos Associados a Tumor , Humanos , Linhagem Celular Tumoral , Interleucina-10/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/patologia , Neoplasias/patologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Polaridade Celular
17.
Genes Dis ; 10(1): 76-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013062

RESUMO

Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.

19.
J Hematol Oncol ; 16(1): 24, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932407

RESUMO

Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.


Assuntos
Inflamassomos , Microambiente Tumoral , Humanos , Interleucina-1 , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA