Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1039-1049, 2022 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-35355472

RESUMO

Hepatitis B virus core protein (HBc) has become a hot spot in drug carrier protein research due to its natural particle self-assembly ability and ease of modification. The truncation of the C-terminal polyarginine domain (CTD, aa 151-183) of HBc does not affect the self-assembly of the particles. However, it does affect the internal and external charges of the particles, which may subsequently affect drug encapsulation. Thus, the truncated C-terminal polyarginine domain (CTD) of HBc and the inserted RGD peptide were selected to construct and express three HBc variants (RH) encapsulated with ICG (RH/ICG) with different C-terminal lengths to compare the stability and drug activity of their nanoformulations. RH160/ICG was found to have a great advantages in encapsulation efficiency and biological imaging. Compared with other HBc variants, RH160/ICG significantly improved encapsulation efficiency, up to 32.77%±1.23%. Cytotoxicity and hemolysis assays further demonstrated the good biocompatibility of RH160/ICG. Cell uptake and in vivo imaging experiments in mice showed that RH160/ICG could efficiently deliver ICG in tumor cells and tumor sites with good imaging effect. This research provides a new direction for further expanding the diagnosis and treatment application of ICG and development of HBc-based nanoparticle drug carrier platform.


Assuntos
Hepatite B , Nanopartículas , Animais , Hepatite B/tratamento farmacológico , Antígenos do Núcleo do Vírus da Hepatite B , Verde de Indocianina/química , Camundongos , Nanopartículas/química , Proteínas do Core Viral
2.
Cancer Cell Int ; 19: 273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660045

RESUMO

BACKGROUND: This study is performed to investigate the effects of adenovirus-mediated X-linked inhibitor of apoptosis protein (XIAP) overexpressed bone marrow mesenchymal stem cells (BMSCs) on brain injury in rats with cerebral palsy (CP). METHODS: Rat's BMSCs were cultured and identified. The XIAP gene of BMSCs was modified by adenovirus expression vector Ad-XIAP-GFP. The rat model of CP with ischemia and anoxia was established by ligating the left common carotid artery and anoxia for 2 h, and BMSCs were intracerebroventricularly injected to the modeled rats. The mRNA and protein expression of XIAP in brain tissue of rats in each group was detected by RT-qPCR and western blot analysis. The neurobehavioral situation, content of acetylcholine (Ach), activity of acetylcholinesterase (AchE), brain pathological injury, apoptosis of brain nerve cells and the activation of astrocytes in CP rats were determined via a series of assays. RESULTS: Rats with CP exhibited obvious abnormalities, increased Ach content, decreased AchE activity, obvious pathological damage, increased brain nerve cell apoptosis, as well as elevated activation of astrocyte. XIAP overexpressed BMSCs improved the neurobehavioral situation, decreased Ach content and increased AchE activity, attenuated brain pathological injury, inhibited apoptosis of brain nerve cells and the activation of astrocytes in CP rats. CONCLUSION: Our study demonstrates that XIAP overexpressed BMSCs can inhibit the apoptosis of brain nerve cells and the activation of astrocytes, increase AchE activity, and inhibit Ach content, so as to lower the CP caused by cerebral ischemia and hypoxia in rats.

3.
Neurochem Res ; 44(7): 1613-1620, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919283

RESUMO

Ischemic stroke is a leading cause of mortality and morbidity worldwide, and oxidative stress plays a significant role in the ischemia stage and reperfusion stage. Previous studies have indicated that both calcium/calmodulin-dependent protein kinase II (CaMKII) and glucose 6-phosphate dehydrogenase (G6PD) are involved in the oxidative stress. Thus, the aim of this study was to investigate the roles of CaMKIIα, an important isoform of CaMKII, and G6PD in a rat model of middle cerebral artery occlusion (MCAO). Intracerebroventricular injection of small interfering ribonucleic acid (siRNA) for CaMKIIα was performed at 48 h pre-MCAO surgery. Immunofluorescence Staining and western blot were performed to detect the expression of p-CaMKIIα and G6PD in the cortices. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was performed to investigate the infarct volume. In addition, neurological deficit, reactive oxygen species (ROS), ratio of reduced-to-oxidized glutathione (GSH/GSSG) and ratio of reduced-to-oxidized oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) were assessed. The results indicated that both p-CaMKIIα and G6PD were widely located in the neurons and astrocytes, and their expression was gradually increased in the cortices after MCAO, which was accompanied by increased level of ROS and decreased levels of GSH/GSSG and NADPH/NADP+. However, after treatment with siRNA for CaMKIIα, p-CaMKIIα expression was decreased and G6PD expression was increased. Moreover, inhibition of CaMKIIα improved the neurological deficit, reduced the infarct volume, decreased the level of ROS and increased the levels of GSH/GSSG and NADPH/NADP+. The results suggested that CaMKIIα inhibition exerted neuroprotective effects through regulating G6PD expression, which provides a new target for prevention and treatment of stroke.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Estresse Oxidativo/fisiologia , Animais , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Inativação Gênica , Dissulfeto de Glutationa/metabolismo , Masculino , NADP/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Biol (Mosk) ; 39(1): 14-20, 2005.
Artigo em Russo | MEDLINE | ID: mdl-15773543

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes including Taxol, one of the most potent antitumor drugs. In order to investigate the role of GGPP synthase in taxol biosynthesis, we cloned, characterized and functionally expressed the GGPP synthase gene from Taxus media. A 3743-bp genomic sequence of T. media was isolated by genome walking strategy which contained an 1182-bp open reading frame (ORF) encoding a 393-amino acid polypeptide that showed high similarity to other plant GGPPSs. Subsequently the full-length cDNA of the GGPPS gene of T. media (designated TmGGPPS) was amplified by RACE. Bioinformatic analysis showed that TmGGPPS was an intron-free gene and its deduced polypeptide contained all the five conserved domains and functional aspartate-rich motifs of the prenyltransferases. By constructing the phylogenetic tree of plant GGPPSs, it was found that plant-derived GGPPSs could be divided into two classes, angiosperm and gymnosperm classes, which might have evolved in parallel from the same ancestor. To our knowledge this was the first report that the geranylgeranyl diphosphate synthase genes were free of intron and evolved in parallel between angiosperms and gymnosperms. The coding sequence of TmGGPPS was expressed in yeast mutant (SFNY368) lacking of GGPP synthase activity through functional complementation, and the transgenic yeast showed to have activity of GGPP synthase. This was also the first time to use SFNY368 to identify the function of plant-derived GGPPSs. Furthermore, investigation of the impact of methyl jasmonate (MeJA) on the expression of TmGGPPS revealed that MeJA-treated T. media cultured cells had much higher expression of TmGGPPS than untreated cells.


Assuntos
Acetatos/farmacologia , Alquil e Aril Transferases/genética , Ciclopentanos/farmacologia , Genoma de Planta , Proteínas de Plantas/genética , Taxus/enzimologia , Leveduras/enzimologia , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Diterpenos/metabolismo , Indução Enzimática , Farnesiltranstransferase , Íntrons , Dados de Sequência Molecular , Mutação , Oxilipinas , Filogenia , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Homologia de Sequência de Aminoácidos , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA