Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Mil Med Res ; 11(1): 36, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863031

RESUMO

BACKGROUND: Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS: Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS: A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION: Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Locos de Características Quantitativas , Humanos , Elementos Facilitadores Genéticos/genética , Neoplasias/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Colorretais/genética , Estudos de Casos e Controles , RNA/genética , China , RNAs Intensificadores
2.
Nat Commun ; 15(1): 5014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866774

RESUMO

Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Testes Genéticos/métodos , Receptores ErbB/genética , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
3.
Artigo em Inglês | MEDLINE | ID: mdl-38898566

RESUMO

Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.

4.
Genome Med ; 16(1): 81, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872215

RESUMO

BACKGROUND: Early detection of colorectal neoplasms can reduce the colorectal cancer (CRC) burden by timely intervention for high-risk individuals. However, effective risk prediction models are lacking for personalized CRC early screening in East Asian (EAS) population. We aimed to develop, validate, and optimize a comprehensive risk prediction model across all stages of the dynamic adenoma-carcinoma sequence in EAS population. METHODS: To develop precision risk-stratification and intervention strategies, we developed three trans-ancestry PRSs targeting colorectal neoplasms: (1) using 148 previously identified CRC risk loci (PRS148); (2) SNPs selection from large-scale meta-analysis data by clumping and thresholding (PRS183); (3) PRS-CSx, a Bayesian approach for genome-wide risk prediction (PRSGenomewide). Then, the performance of each PRS was assessed and validated in two independent cross-sectional screening sets, including 4600 patients with advanced colorectal neoplasm, 4495 patients with non-advanced adenoma, and 21,199 normal individuals from the ZJCRC (Zhejiang colorectal cancer set; EAS) and PLCO (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; European, EUR) studies. The optimal PRS was further incorporated with lifestyle factors to stratify individual risk and ultimately tested in the PLCO and UK Biobank prospective cohorts, totaling 350,013 participants. RESULTS: Three trans-ancestry PRSs achieved moderately improved predictive performance in EAS compared to EUR populations. Remarkably, the PRSs effectively facilitated a thorough risk assessment across all stages of the dynamic adenoma-carcinoma sequence. Among these models, PRS183 demonstrated the optimal discriminatory ability in both EAS and EUR validation datasets, particularly for individuals at risk of colorectal neoplasms. Using two large-scale and independent prospective cohorts, we further confirmed a significant dose-response effect of PRS183 on incident colorectal neoplasms. Incorporating PRS183 with lifestyle factors into a comprehensive strategy improves risk stratification and discriminatory accuracy compared to using PRS or lifestyle factors separately. This comprehensive risk-stratified model shows potential in addressing missed diagnoses in screening tests (best NPV = 0.93), while moderately reducing unnecessary screening (best PPV = 0.32). CONCLUSIONS: Our comprehensive risk-stratified model in population-based CRC screening trials represents a promising advancement in personalized risk assessment, facilitating tailored CRC screening in the EAS population. This approach enhances the transferability of PRSs across ancestries and thereby helps address health disparity.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Medição de Risco , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Fatores de Risco
5.
Transl Androl Urol ; 13(4): 509-525, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38721281

RESUMO

Background: Lactate metabolism-related (LMR) long noncoding RNAs (lncRNAs) play significant roles in various cancers, but their impact on kidney renal clear cell carcinoma (KIRC) remains unclear. This study aimed to explore the value of LMR lncRNA and develop a risk model for KIRC. Methods: Data on KIRC patients were downloaded from The Cancer Genome Atlas (TCGA) database. LMR lncRNAs were identified by co-expression, univariate and multivariate analyses, and least absolute shrinkage selection operator (LASSO) regression analysis. Subsequently, a prognostic signature was constructed and its accuracy was verified. To predict the prognosis of KIRC effectively, we established a nomogram based on this information. Enrichment analysis, tumor mutational burden (TMB) analysis, immune status and the therapeutic sensitivities of KIRC patients were also investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of lncRNAs. Results: We constructed and verified a predictive signature based on six LMR lncRNA (LINC00944, AC090772.3, Z83745.1, AP001267.3, AC092296.1, and AL162377.1) to assess the patient prognoses of KIRC. Survival analyses showed a more unfavorable outcome in high-risk patients (P<0.001). Enrichment analysis demonstrated that immune-related pathways were enriched in the high-risk group. Besides, patients classified by risk scores had distinguishable immune status, TMB, response to immunotherapy, and sensitivity to chemotherapy and targeted drugs. Conclusions: The LMR lncRNAs signature has significant implications for prognostic assessment and clinical treatment guidance in KIRC.

6.
Small ; 20(4): e2307029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712137

RESUMO

Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.


Assuntos
Melanoma , Neoplasias , Humanos , Melanoma/tratamento farmacológico , Boro , Corantes Fluorescentes , Hidrogênio , Peróxido de Hidrogênio , Metais , Linhagem Celular Tumoral
7.
Chin Med J (Engl) ; 137(4): 431-440, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37690994

RESUMO

BACKGROUND: Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS: We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS: The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION: The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION: No. NCT00454519 ( https://clinicaltrials.gov/ ).


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Prognóstico , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Microambiente Tumoral , Aminopeptidases/genética , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Menor/genética
8.
Sci China Life Sci ; 67(1): 132-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747674

RESUMO

Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.


Assuntos
Neoplasias Colorretais , Redes Reguladoras de Genes , Humanos , Estudo de Associação Genômica Ampla , Teorema de Bayes , Multiômica , Fosfatidilinositol 3-Quinases/genética , Predisposição Genética para Doença , Fatores de Transcrição/genética , Neoplasias Colorretais/metabolismo , Polimorfismo de Nucleotídeo Único
9.
Am J Clin Nutr ; 119(2): 406-416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042409

RESUMO

BACKGROUND: Dietary patterns have been associated with several cancers, especially gastrointestinal cancer (GIC). However, whether a healthy dietary pattern could modify the risk of GIC among people with different genetic backgrounds is not clear. OBJECTIVE: The objective of the study was to investigate how dietary patterns and genetic susceptibility contribute to the risk of GIC independently and jointly. METHODS: This large-scale prospective cohort study included 105,463 participants in UK Biobank who were aged 40-72 y and cancer-free at baseline. Dietary intake (Oxford WebQ) was used to calculate dietary pattern scores including dietary approach to stop hypertension (DASH) score and healthful plant-based diet index (hPDI). Genetic risk was quantified by a polygenic risk score (PRS) comprising 129 known GIC-associated loci. Cox proportional hazards regression was performed to estimate the associations of dietary patterns and PRS with GIC incidence after adjusting for potential confounders. RESULTS: Over a median follow-up of 11.70 y, 1,661 participants were diagnosed with GIC. DASH and hPDI were associated with 20% and 36% reductions, respectively, in GIC risk. Low PRS was associated with a 30 % decrease in GIC risk (HR: 0.70; 95% CI: 0.62, 0.79). Participants with healthy dietary scores at high-genetic risk had a lower GIC risk with HR of 0.77 (95% CI: 0.60, 0.98) for DASH and 0.66 (95% CI: 0.52, 0.84) for hPDI than those with unhealthy dietary score. Participants with both high-dietary score and low-genetic risk showed the lowest risk of GIC, with HR of 0.58 (95% CI: 0.45, 0.75) for DASH and 0.45 (95% CI: 0.34, 0.58) for hPDI. CONCLUSIONS: Adherence to DASH and hPDI were associated with a lower risk of some gastrointestinal cancers, and these 2 dietary patterns may partly compensate for genetic predispositions to cancer. Our results advance the development of precision medicine strategies that consider both dietary patterns and genetics to improve gastrointestinal health.


Assuntos
Neoplasias Gastrointestinais , Hipertensão , Humanos , Estudos Prospectivos , Padrões Dietéticos , Fatores de Risco , Dieta , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/genética , Plantas , Estratificação de Risco Genético , Predisposição Genética para Doença
10.
J Colloid Interface Sci ; 658: 276-285, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104410

RESUMO

Chemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e., iron-based borides (FeB), using the superchaotropic effect of a boron cluster (closo-[B12H12]2-) and organic ligands, followed by high-temperature calcination. Experimental data and theoretical calculations revealed that FeB nanoparticles exhibit a Fenton-like effect, efficiently decomposing hydrogen peroxide into •OH and thus increasing the concentration of ROS. FeB nanomaterials demonstrate excellent catalytic performance, efficiently generate ROS, and exert significant antitumor effects in cell experiments and animal models. Therefore, FeB nanomaterials have considerable potential for application in tumor treatment and offer new insights for the development of novel and efficient cancer therapy strategies.


Assuntos
Nanopartículas , Neoplasias , Animais , Espécies Reativas de Oxigênio , Catálise , Peróxido de Hidrogênio , Ferro , Neoplasias/tratamento farmacológico , Carbono , Linhagem Celular Tumoral
11.
Eur J Med Res ; 28(1): 463, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884978

RESUMO

BACKGROUND: A novel CT-linac (kilovolt fan-beam CT-linac) has been introduced into total marrow and lymphoid irradiation (TMLI) treatment. Its integrated kilovolt fan-beam CT (kV FBCT) can be used not only for image guidance (IGRT) but also to re-calculate the dose. PURPOSE: This study reported our clinical routine on performing TMIL treatment on the CT-linac, as well as dose distribution comparison between planned and re-calculated based on IGRT FBCT image sets. METHODS: 11 sets of data from 5 male and 6 female patients who had underwent the TMLI treatment with uRT-linac 506c were selected for this study. The planning target volumes consist of all skeletal bones exclusion of the mandible and lymphatic sanctuary sites. A planned dose of 10 Gy was prescribed to all skeletal bones exclusion of the mandible in two fractions and 12 Gy in two fractions was prescribed to lymphatic sanctuary sites. Each TMLI plan contained two sub-plans, one dynamic IMRT for the upper body and the other VMAT for the lower extremity. Two attempts were made to obtain homogeneous dose in the overlapping region, i.e., applying two plans with different isocenters for the treatment of two fractions, and using a dose gradient matching scheme. The CT scans, including planning CT and IGRT FBCT, were stitched to a whole body CT scan for dose distribution evaluation. RESULTS: The average beam-on time of Planupper is 30.6 min, ranging from 24.9 to 37.5 min, and the average beam-on time of Planlower is 6.3 min, ranging from 5.7 to 8.2 min. For the planned dose distribution, the 94.79% of the PTVbone is covered by the prescription dose of 10 Gy (V10), and the 94.68% of the PTVlymph is covered by the prescription dose of 12 Gy (V12). For the re-calculated dose distribution, the 92.17% of the PTVbone is covered by the prescription dose of 10 Gy (V10), and the 90.07% of the PTVlymph is covered by the prescription dose of 12 Gy (V12). The results showed that there is a significant difference (p < 0.05) between planning V10, V12 and delivery V10, V12. There is no significant difference (p > 0.05) between planned dose and re-calculated dose on selected organs, except for right lens (p < 0.05, Dmax). The actual delivered maximum dose of right lens is apparently larger than the planned dose of it. CONCLUSION: TMLI treatment can be performed on the CT-linac with clinical acceptable quality and high efficiency. Evaluation of the recalculated dose on IGRT FBCT suggests the treatment was delivered with adequate target coverage.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Masculino , Feminino , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Medula Óssea , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Irradiação Linfática , Tomografia Computadorizada por Raios X/métodos
12.
Genome Biol ; 24(1): 247, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904244

RESUMO

Genomic abnormalities are strongly associated with cancer and infertility. In this study, we develop a simple and efficient method - multiple genetic abnormality sequencing (MGA-Seq) - to simultaneously detect structural variation, copy number variation, single-nucleotide polymorphism, homogeneously staining regions, and extrachromosomal DNA (ecDNA) from a single tube. MGA-Seq directly sequences proximity-ligated genomic fragments, yielding a dataset with concurrent genome three-dimensional and whole-genome sequencing information, enabling approximate localization of genomic structural variations and facilitating breakpoint identification. Additionally, by utilizing MGA-Seq, we map focal amplification and oncogene coamplification, thus facilitating the exploration of ecDNA's transcriptional regulatory function.


Assuntos
Variações do Número de Cópias de DNA , Oncogenes , Genômica/métodos , Regulação da Expressão Gênica , DNA
13.
Cancer Res ; 83(21): 3650-3666, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669142

RESUMO

Alternative polyadenylation (APA) is emerging as a major mechanism of posttranscriptional regulation. APA can impact the development and progression of cancer, suggesting that the genetic determinants of APA might play an important role in regulating cancer risk. Here, we depicted a pan-cancer atlas of human APA quantitative trait loci (apaQTL), containing approximately 0.7 million apaQTLs across 32 cancer types. Systematic multiomics analyses indicated that cancer apaQTLs could contribute to APA regulation by altering poly(A) motifs, RNA-binding proteins (RBP), and chromatin regulatory elements and were preferentially enriched in genome-wide association studies (GWAS)-identified cancer susceptibility loci. Moreover, apaQTL-related genes (aGene) were broadly related to cancer signaling pathways, high mutational burden, immune infiltration, and drug response, implicating their potential as therapeutic targets. Furthermore, apaQTLs were mapped in Chinese colorectal cancer tumor tissues and then screened for functional apaQTLs associated with colorectal cancer risk in 17,789 cases and 19,951 controls using GWAS-ChIP data, with independent validation in a large-scale population consisting of 6,024 cases and 10,022 controls. A multi-ancestry-associated apaQTL variant rs1020670 with a C>G change in DNM1L was identified, and the G allele contributed to an increased risk of colorectal cancer. Mechanistically, the risk variant promoted aberrant APA and facilitated higher usage of DNM1L proximal poly(A) sites mediated by the RBP CSTF2T, which led to higher expression of DNM1L with a short 3'UTR. This stabilized DNM1L to upregulate its expression, provoking colorectal cancer cell proliferation. Collectively, these findings generate a resource for understanding APA regulation and the genetic basis of human cancers, providing insights into cancer etiology. SIGNIFICANCE: Cancer risk is mediated by alternative polyadenylation quantitative trait loci, including the rs1020670-G variant that promotes alternative polyadenylation of DNM1L and increases colorectal cancer risk.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Humanos , Poliadenilação/genética , Regulação da Expressão Gênica , Locos de Características Quantitativas , Neoplasias Colorretais/genética , Regiões 3' não Traduzidas/genética
14.
Ann Hematol ; 102(12): 3521-3532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702822

RESUMO

Sarcopenia is known to be associated with an increased risk of adverse outcomes in a variety of malignancies, but its impact in extranodal natural killer/T cell lymphoma, nasal type (ENKTL-NT) is unknown. The aim of this study was to explore the prognostic relevance of sarcopenia defined by MRI-based masticatory muscle index in ENKTL-NT patients. A total of 112 patients with newly diagnosed ENKTL-NT who underwent cranial magnetic resonance imaging (MRI) were enrolled. The masticatory skeletal muscle index (M-SMI) was measured based on T2-weighted MR images and sarcopenia was defined by M-SMI<5.5 cm2/ m2. The median M-SMI was 5.47 (4.91-5.96) cm2/m2; 58 were identified with sarcopenia in this cohort. On multivariate analyses, sarcopenia was the only independently risk factor predicting overall survival (HR, 4.590; 95% CI, 1.657-12.715; p = 0.003), progression-free survival (HR, 3.048; 95% CI, 1.515-6.130; p = 0.002), and treatment response (HR, 0.112; 95% CI, 0.042-0.301; p < 0.001). In addition, we found that integrating sarcopenia into prognostic indices could improve the discriminative power of the corresponding original model. Stratification analysis showed that sarcopenia was able to further identify survival differences in patients that could not be distinguished by prognostic models. In summary, our study suggests that sarcopenia defined by MRI-based M-SMI represents a new and routinely applicable prognostic indicator of clinical outcome or predictor of treatment response in ENKTL-NT patients, and may aid in risk stratification and treatment decisions.


Assuntos
Linfoma Extranodal de Células T-NK , Sarcopenia , Humanos , Prognóstico , Linfoma Extranodal de Células T-NK/diagnóstico , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Músculos da Mastigação/patologia , Células Matadoras Naturais/patologia , Estudos Retrospectivos
15.
Nat Commun ; 14(1): 5958, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749132

RESUMO

Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Elementos Facilitadores Genéticos/genética , Neoplasias/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a RNA/genética
16.
Gastroenterology ; 165(5): 1151-1167, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541527

RESUMO

BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.

18.
Int J Cancer ; 153(3): 499-511, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087737

RESUMO

Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.


Assuntos
Neoplasias Colorretais , Gorduras na Dieta , Humanos , Estudos Prospectivos , Estudos de Casos e Controles , Gorduras na Dieta/efeitos adversos , Fatores de Risco , Ácidos Graxos/efeitos adversos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/induzido quimicamente
19.
J Zhejiang Univ Sci B ; 24(3): 232-247, 2023 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36915999

RESUMO

Drastic surges in intracellular reactive oxygen species (ROS) induce cell apoptosis, while most chemotherapy drugs lead to the accumulation of ROS. Here, we constructed an organic compound, arsenical N-|(4-(1,3,2-dithiarsinan-2-yl)phenyl)acrylamide (AAZ2), which could prompt the ROS to trigger mitochondrial-dependent apoptosis in gastric cancer (GC). Mechanistically, by targeting pyruvate dehydrogenase kinase 1 (PDK1), AAZ2 caused metabolism alteration and the imbalance of redox homeostasis, followed by the inhibition of phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and leading to the activation of B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax)/caspase-9 (Cas9)/Cas3 cascades. Importantly, our in vivo data demonstrated that AAZ2 could inhibit the growth of GC xenograft. Overall, our data suggested that AAZ2 could contribute to metabolic abnormalities, leading to mitochondrial-dependent apoptosis by targeting PDK1 in GC.


Assuntos
Transdução de Sinais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
20.
Lab Chip ; 23(6): 1703-1712, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36799214

RESUMO

Acute leukemia (AL) is one of the top life-threatening diseases. Accurate typing of AL can significantly improve its prognosis. However, conventional methods for AL typing often require cell staining, which is time-consuming and labor-intensive. Furthermore, their performance is highly limited by the specificity and availability of fluorescent labels, which can hardly meet the requirements of AL typing in clinical settings. Here, we demonstrate AL typing by intelligent optical time-stretch (OTS) imaging flow cytometry on a microfluidic chip. Specifically, we employ OTS microscopy to capture the images of cells in clinical bone marrow samples with a spatial resolution of 780 nm at a high flowing speed of 1 m s-1 in a label-free manner. Then, to show the clinical utility of our method for which the features of clinical samples are diverse, we design and construct a deep convolutional neural network (CNN) to analyze the cellular images and determine the AL type of each sample. We measure 30 clinical samples composed of 7 acute lymphoblastic leukemia (ALL) samples, 17 acute myelogenous leukemia (AML) samples, and 6 samples from healthy donors, resulting in a total of 227 620 images acquired. Results show that our method can distinguish ALL and AML with an accuracy of 95.03%, which, to the best of our knowledge, is a record in label-free AL typing. In addition to AL typing, we believe that the high throughput, high accuracy, and label-free operation of our method make it a potential solution for cell analysis in scientific research and clinical settings.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Citometria de Fluxo/métodos , Microfluídica , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA