Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Talanta ; 273: 125884, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508128

RESUMO

A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 µm and 4.5 µm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 µm particles and a removal rate 96.2% for 4.5 µm particles was observed at sample flow rate of 10 µL min-1 and sheath flow rate of 190 µL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 µL min-1, sheath flow rate of 190 µL min-1 and washing flow rate of 63 µL min-1.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Hidrodinâmica , Eritrócitos , Células MCF-7 , Leucócitos , Separação Celular
2.
J Hazard Mater ; 465: 133029, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042005

RESUMO

Tracking and imaging of nano-plastics are extremely challenging, especially in fresh biological samples. Here, we propose a new strategy in which polystyrene (PS) was doped with the europium chelate Eu (DBM)3bpy to quantify, track, and in situ image nano-plastics in fresh cucumber based on inherent metals using cryogenic laser ablation inductively coupled plasma mass spectrometry (cryo-LA-ICP-MS). The cryogenic conditions provide a stable condition for imaging fresh cucumber, suppressing the evaporation of water in fresh plants, and maintaining the original structure of plants with respect to room temperature imaging in LA-ICP-MS. The plants were cultivated in two types of nano-plastics solutions with low (50 mg/L) and high (200 mg/L) concentrations for 9 days. The results showed that nano-plastics mainly enrich the roots and have negative effects, which decrease the trace elements of Zn, Mn, and Cu in cucumber. Smaller PS particles are able to penetrate the plant more easily and inflict serious damage. Novel imaging method provides a novel insight into the tracking and imaging of nano-plastics in fresh plant samples. The results illustrated that nano-plastics deposition on plants has the potential to have direct ecological effects as well as consequences for potential health.


Assuntos
Terapia a Laser , Oligoelementos , Microplásticos , Plásticos , Terapia a Laser/métodos , Oligoelementos/análise , Plantas/química , Espectrometria de Massas/métodos
3.
Anal Chem ; 95(44): 16176-16184, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37879040

RESUMO

The exploration of cytology mechanisms of nanosilver uptake, toxicity, and detoxification has become an important issue due to its widespread applications. Previous studies have shown differences in the toxic response of mammalian cells to nanosilver. However, the analysis results based on cell populations ignore the impact of cell uptake heterogeneity on the expression of associated stress proteins and cellular physiological activities. In this respect, this work investigated the interaction between silver uptake and metallothionein (MT) expression in individual cells. In addition, we have also preliminarily elucidated the sensitivity variation to AgNPs by using five cell lines, e.g., LX-2, HepG-2, SK-HEP-1, Huh-7, and MDA-MB-231, by adopting a two-dimensional (2D) high-throughput single-cell analysis platform coupling laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). We developed a 2D data analysis method for one-to-one unification of fluorescence-mass spectrometry signals corresponding to a specific single cell. It indicated that there is no obvious correlation between cellular silver uptake and cell size, and the low MT expression of cells is more sensitive to silver nanoparticles. For each cell line, significant heterogeneity in MT expression was observed. This provides important information for understanding the potential heterogeneous effects of nanosilver on mammalian biological systems. Overall, detoxified cells are more tolerant to nanosilver and normal cells are more tolerant than cancer cells.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Prata/química , Metalotioneína/química , Mamíferos/metabolismo , Análise de Célula Única
4.
Anal Chem ; 95(38): 14447-14454, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695163

RESUMO

Single cell phenotypic analysis is significant for clinical diagnosis, treatment, and prognosis of cancer. Accurate differentiation of cancer stem cell (CSC) subpopulations from a large number of cancer cells may become a cancer surveillance tool and provide important implications for the development of new CSC-targeted therapy strategies. Herein, we report a new approach based on dual-isotope inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for single cell phenotypic analysis. High-throughput single cell sampling was achieved by a spiral channel microfluidic chip for cell focusing and alignment, and single cell analysis was performed with time-resolved ICP-QMS by identifying the highly specific probes. This enables the monitoring of two surface protein markers (EpCAM and MUC1) of three cell types, i.e., HeLa, MCF-7, and HepG2, at single cell level. The analysis of breast cancer stem cells further confirmed its capability in distinguishing rare cell phenotypes. The present study provides promising possibilities for adopting ICP-QMS in biomedical investigations in terms of cell typing, stemness identification of tumor cells, and cell heterogeneity analysis.


Assuntos
Isótopos , Neoplasias , Humanos , Diferenciação Celular , Células HeLa , Células-Tronco Neoplásicas , Análise de Célula Única
5.
Anal Chem ; 95(35): 13297-13304, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610312

RESUMO

A 2D flow cytometry platform, known as CytoLM Plus, was developed for multi-parameter single-cell analysis. Single particles or cells after hydrodynamic alignment in a microfluidic unit undergo first-dimension fluorescence and side scattering dual-channel optical detection. They were thereafter immediately directed to ICP-MS by connecting the microfluidic unit with a high-efficiency nebulizer to facilitate the second-dimension ICP-MS detection. Flow cytometry measurements of fluorescent microspheres evaluated the performance of CytoLM Plus for optical detection. 6434 fluorescence bursts were observed with a valid signal proportion as high as 99.7%. After signal unification and gating analysis, 6067 sets of single-particle signals were obtained with 6.6 and 6.2% deviations for fluorescence burst area and height, respectively. This is fairly comparable with that achieved by a commercial flow cytometer. Afterward, CytoLM Plus was evaluated by 2D flow cytometry measurement of Ag+-incubated and AO-stained MCF-7 cells. A program for 2D single-cell signal unification was developed based on the algorithm of screening in lag time window. In the present case, a lag time window of -4.2 ± 0.09 s was determined by cross-correlation analysis and two-parameter optimization, which efficiently unified the concurrent single-cell signals from fluorescence, side scattering, and ICP-MS. A total of 495 sets of concurrent 2D signals were screened out, and the statistical analysis of these single-cell signals ensured 2D multi-parameter single-cell analysis and data elucidation.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Corantes , Citometria de Fluxo , Análise de Célula Única
6.
Int J Nanomedicine ; 17: 6157-6180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523423

RESUMO

Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinógenos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Carcinogênese , Biomarcadores , Portadores de Fármacos/química
7.
Biomaterials ; 291: 121878, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335716

RESUMO

Bioenergy (ATP) is essentially required for supporting the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). However, factors such as high ROS levels and decreased glucose metabolism severely limit the bioenergy production in osteoporotic MSCs. We have prepared CaCO3-Quercetin- chromium (CaCO3-Qu-Cr) nanoparticles via ion coordination and packaged them into ROS-responsive gelatin/chitosan coating on titanium surface (Ti/Gel/CaCO3-Qu-Cr), aiming to improve the ATP production and cell mineralization by ameliorating ROS levels via Qu-mediated antioxidative effect and the promotional effect of Qu-Cr combination on glucose metabolism. Characterization results confirmed that Ti/Gel/CaCO3-Qu-Cr could be degraded in an ROS-responsive manner to release CaCO3-Qu-Cr nanoparticles continuously and eliminate excessive ROS in both the MSCs and microenvironment. Meanwhile, Ti/Gel/CaCO3-Qu-Cr significantly increased the glucose uptake and metabolism in osteoporotic MSCs and boosted their ATP and citrate production. This study laid the foundation for the development of functional titanium-based implants for the improvement of osteoporotic osseointegration.


Assuntos
Osteogênese , Osteoporose , Humanos , Titânio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Osseointegração , Diferenciação Celular , Metabolismo Energético , Glucose/farmacologia , Trifosfato de Adenosina/metabolismo , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 14(38): 42915-42930, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107718

RESUMO

Endowing bone regeneration materials with both stem cell recruitment and osteoinduction properties is a key factor in promoting osseointegration of titanium (Ti) implants. In this study, Apt19s-grafted oxidized hyaluronic acid (OHA) was deposited onto a protein-mediated biomineralization hydroxyapatite (HAp) coating of Ti. HAp was achieved by the treatment of lysozyme and tris(2-carboxyethyl) phosphonate mixture and then soaked in calcium ion (Ca2+) solution to obtain functional Ti substrate (Ti/HAp/OHA-Apt). In vitro studies confirmed that Ti/HAp/OHA-Apt could effectively maintain the sustained release of Apt19s from Ti for 7 days. The released Apt19s significantly enhanced the migration of bone marrow mesenchymal stem cells (MSCs), which was reflected by the experiment of transwell assay, wound healing, and zymogram detection. Compared with pure Ti, Ti/HAp/OHA-Apt was able to adjust the adsorption of functional proteins at the Ti-based interface to expose their active sites, which significantly increased the expression of adhesion-associated proteins (vinculin and tensin) in MSCs to promote their adhesion on Ti-based interface. In vitro cell experiments of alkaline phosphatase activity staining, mineralization detection, and expression of osteogenesis-related genes showed that Ti/HAp/OHA-Apt significantly enhanced the osteogenic differentiation ability of MSCs, which may be highly related to the porous structure of hydroxyapatite on Ti interface. In vivo test of Micro-CT, H&E staining, and histochemical staining further confirmed that Ti/HAp/OHA-Apt was able to promote MSC recruitment at the peri-implant interface to form new bone. This work provides a new approach to develop functional Ti-based materials for bone defect repair.


Assuntos
Células-Tronco Mesenquimais , Organofosfonatos , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Preparações de Ação Retardada/farmacologia , Dimaprit/análogos & derivados , Durapatita/química , Ácido Hialurônico/farmacologia , Muramidase/metabolismo , Osseointegração , Osteogênese , Propriedades de Superfície , Tensinas/metabolismo , Titânio/química , Vinculina/metabolismo
9.
Biol Trace Elem Res ; 200(9): 4027-4034, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34761357

RESUMO

Aluminum oxide nanoparticles (Al2O3NPs) are one class of widely used nanomaterials. However, the teratogenicity toxicity of Al2O3NPs in mammal remains poorly understood. This study was aimed to evaluate the teratogenicity of Al2O3NPs in Sprague Dawley (SD) rats by gavage and to compare the effects of Al2O3NPs to those of equivalent dose of microscale aluminum oxide (bulk Al2O3). Sixty pregnant rats were randomly divided into 5 groups and treated with 100 and 200 mg/kg body weight (bw) Al2O3NPs (30 nm), 200 mg/kg bulk Al2O3, deionized water (as the negative control), and 300 mg/kg aspirin (as the positive control). Rats were exposed daily by oral gavage from the 7th day of gestation for 10 consecutive days and sacrificed on the 20th day of gestation. Results of the study showed that there were no significant effects of Al2O3NPs on pregnant rats (clinical signs, body weight, food consumption, ovary and uterus weight, number of corpora lutea) and fetuses (body weight, sex, body length, tail length, skeletal and visceral development). Under the experimental conditions of the present study, 10 consecutive days of repeated oral administration of Al2O3NPs at doses of up to 200 mg/kg/day did not induce any treatment-related teratogenicity in SD rats. Accordingly, the NOAEL was determined to be 200 mg/kg Al2O3NPs (106 mg Al/kg bw/day) in rats. The teratogenic effects of Al2O3NPs in rats were comparable to those of the bulk Al2O3 of same doses (200 mg/kg).


Assuntos
Óxido de Alumínio , Nanopartículas , Óxido de Alumínio/toxicidade , Animais , Peso Corporal , Feminino , Feto , Mamíferos , Gravidez , Ratos , Ratos Sprague-Dawley
10.
FEBS Lett ; 595(22): 2768-2780, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34652813

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health problem that develops through unclear molecular mechanisms. The P2X7 purinergic receptor (P2RX7) is an ATP-gated ion channel that belongs to the P2XR family. Thus far, studies on P2RX7 in NAFLD have been largely contradictory. Integrating experiments and modeling, we elucidate the dynamic processes of lipid droplet fusion and degradation following regulation of P2RX7. We show that activation of P2RX7 can activate the AMPK/ULK1 pathway to promote autophagosome generation and lysosomal degradation of autophagosomes. Inhibiting P2RX7 has the opposite effect. Notably, we find that lipid droplets become larger by the fusion of dysfunctional lysosomes but cannot be degraded by them following P2RX7 inhibition. Our study provides evidence that P2RX7 activation improves NAFLD by promoting lipophagy.


Assuntos
Autofagia , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Células Hep G2 , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/genética
11.
Talanta ; 218: 121147, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797903

RESUMO

Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.


Assuntos
Técnicas Analíticas Microfluídicas , Citometria de Fluxo , Microfluídica , Análise de Célula Única
12.
Brain Dev ; 41(10): 829-838, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31495513

RESUMO

BACKGROUNDS: Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS: In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS: The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION: Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.


Assuntos
Epilepsia/imunologia , Malformações do Desenvolvimento Cortical do Grupo I/imunologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Esclerose Tuberosa/imunologia , Astrócitos/patologia , Encéfalo/patologia , Encefalopatias/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , China , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Neurogênese , Neurônios/metabolismo , Transdução de Sinais , Transcriptoma/genética , Esclerose Tuberosa/metabolismo
13.
Mol Microbiol ; 111(1): 6-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299574

RESUMO

Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Proteínas ras/metabolismo , Adaptação Fisiológica , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/patogenicidade , Transcrição Gênica
14.
Oncol Lett ; 14(1): 165-170, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693149

RESUMO

Nutrition screening to identify patients at risk of malnutrition is vital for cancer patients because of the high prevalence of malnutrition in this population. The aim of the present study was to compare different methods of nutrition assessment in patients with tumors. From June 2013 to June 2014, we conducted an observational multicenter study to compare the assessment of nutritional status in patients with tumors by anthropometry, biochemical indicators, nutritional risk screening (NRS-2002) and patient-generated subjective global assessment (PG-SGA). Mann-Whitney test and Kruskal-Wallis H non-parametric test were used for intergroup comparisons. Spearmans rank correlation coefficients were calculated to evaluate the association between different methods of nutritional assessment. The κ statistic was used to evaluate the agreement between two assessment methods. A total of 927 oncology inpatients underwent full nutritional assessment and nutrition screening. The PG-SGA tool determined that 13.7% of patients were well-nourished (PG-SGA from 0-1) and the rest (86.3%) were malnourished. Among the malnourished patients, 57.8% were moderately malnourished (PG-SGA from 2-8) and 28.5% were severely malnourished (PG-SGA ≥9). According to NRS-2002, 30.7% of patients were at nutritional risk (NRS-2002 ≥3). There was a significant positive correlation between PG-SGA scores and NRS-2002 scores in both men and women. Compared to albumin, the PG-SGA had a sensitivity of 93.78% and specificity of 21.80%. In comparison, NRS-2002 had a low sensitivity of 43.13% and relatively higher specificity of 82.16%. In conclusion, the relationship between PG-SGA, NRS-2002 and nutritional status is statistically significant. Compared with NRS-2002, PG-SGA is a suitable screening tool for detecting the risk of malnutrition in patients with cancer.

15.
J Mol Neurosci ; 62(2): 222-231, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28455787

RESUMO

Focal cortical dysplasia type II (FCD II) and tuberous sclerosis complex (TSC) are well-known causes of chronic refractory epilepsy in children. Canonical transient receptor potential channels (TRPCs) are non-selective cation channels that are commonly activated by phospholipase C (PLC) stimulation. Previous studies found that TRPC4 may participate in the process of epileptogenesis. This study aimed to examine the expression and distribution of TRPC4 in FCD II (n = 24) and TSC (n = 11) surgical specimens compared with that in age-matched autopsy control samples (n = 12). We found that the protein levels of TRPC4 and its upstream factor, PLC delta 1 (PLCD1), were elevated in FCD II and TSC samples compared to those of control samples. Immunohistochemistry assays revealed that TRPC4 staining was stronger in malformed cells, such as dysmorphic neurons, balloon cells and giant cells. Moderate-to-strong staining of the upstream factor PLCD1 was also identified in abnormal neurons. Moreover, double immunofluorescence staining revealed that TRPC4 was colocalised with glutamatergic and GABAergic neuron markers. Taken together, our results indicate that overexpression of TRPC4 protein may be involved in the epileptogenesis of FCD II and TSC.


Assuntos
Epilepsia/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Canais de Cátion TRPC/genética , Esclerose Tuberosa/metabolismo , Estudos de Casos e Controles , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Canais de Cátion TRPC/metabolismo , Esclerose Tuberosa/patologia , Regulação para Cima
16.
J Neuroinflammation ; 13(1): 85, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095555

RESUMO

BACKGROUND: Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are well-recognized causes of chronic intractable epilepsy in children. Accumulating evidence suggests that activation of the microglia/macrophage and concomitant inflammatory response in FCD IIb and TSC may contribute to the initiation and recurrence of seizures. The membrane glycoproteins CD47 and CD200, which are highly expressed in neurons and other cells, mediate inhibitory signals through their receptors, signal regulatory protein α (SIRP-α) and CD200R, respectively, in microglia/macrophages. We investigate the levels and expression pattern of CD47/SIRP-α and CD200/CD200R in surgically resected brain tissues from patients with FCD IIb and TSC, and the potential effect of soluble human CD47 Fc and CD200 Fc on the inhibition of several proinflammatory cytokines associated with FCD IIb and TSC in living epileptogenic brain slices in vitro. The level of interleukin-4 (IL-4), a modulator of CD200, was also investigated. METHODS: Twelve FCD IIb (range 1.8-9.5 years), 13 TSC (range 1.5-10 years) patients, and 6 control cases (range 1.5-11 years) were enrolled. The levels of CD47/SIRP-α and CD200/CD200R were assessed by quantitative real-time polymerase chain reaction and western blot. The expression pattern of CD47/SIRP-α and CD200/CD200R was investigated by immunohistochemical analysis, and the cytokine concentrations were measured by enzyme-linked immune-sorbent assays. RESULTS: Both the messenger RNA and protein levels of CD47, SIRP-α, and CD200, as well as the mRNA level of IL-4, were downregulated in epileptogenic lesions of FCD IIb and TSC compared with the control specimens, whereas CD200R levels were not significantly changed. CD47, SIRP-α, and CD200 were decreasingly expressed in dysmorphic neuron, balloon cells, and giant cells. CD47 Fc and CD200 Fc could inhibit IL-6 release but did not suppress IL-1ß or IL-17 production. CONCLUSIONS: Our results suggest that microglial activation may be partially caused by CD47/SIRP-α- and CD200/CD200R-mediated reductions in the immune inhibitory pathways within FCD IIb and TSC cortical lesions where chronic neuroinflammation has been established. Upregulation or activation of CD47/SIRP-α and CD200/CD200R may have therapeutic potential for controlling neuroinflammation in human FCD IIb and TSC.


Assuntos
Antígenos CD/biossíntese , Encéfalo/metabolismo , Antígeno CD47/biossíntese , Epilepsia/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Esclerose Tuberosa/metabolismo , Western Blotting , Criança , Pré-Escolar , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Lactente , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
17.
Brain Res ; 1636: 183-192, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874068

RESUMO

Cortical tubers in patients with tuberous sclerosis complex (TSC) are highly associated with intractable epilepsy. Recent evidence has shown that transient receptor potential vanilloid 4 (TRPV4) has direct effects on both neurons and glial cells. To understand the role of TRPV4 in pathogenesis of cortical tubers, we investigated the expression patterns of TRPV4 in cortical tubers of TSC compared with normal control cortex (CTX). We found that TRPV4 was clearly up-regulated in cortical tubers at the protein levels. Immunostaining indicated that TRPV4 was specially distributed in abnormal cells, including dysplastic neurons (DNs) and giant cells (GCs). In addition, double immunofluorescent staining revealed that TRPV4 was localized on neurofilament proteins (NF200) positive neurons and glial fibrillary acidic portein (GFAP) positive reactive astrocytes. Moreover, TRPV4 co-localized with both glutamatergic and GABAergic neurons. Furthermore, protein levels of protein kinase C (PKC), but not protein kinase A (PKA), the important upstream factors of the TRPV4, were significantly increased in cortical tubers. Taken together, the overexpression and distribution patterns of TRPV4 may be linked with the intractable epilepsy caused by TSC.


Assuntos
Córtex Cerebral/metabolismo , Canais de Cátion TRPM/metabolismo , Esclerose Tuberosa/patologia , Criança , Pré-Escolar , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Lactente , Masculino , Proteínas de Neurofilamentos/metabolismo , Proteína Quinase C/metabolismo , Convulsões/etiologia , Esclerose Tuberosa/complicações , Ácido gama-Aminobutírico/metabolismo
18.
CNS Neurosci Ther ; 22(4): 280-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842013

RESUMO

AIM: Focal cortical dysplasia (FCD) represents a well-known cause of medically intractable epilepsy. Studies found that transient receptor potential vanilloid receptor 4 (TRPV4) may participate in the occurrence of seizures. This study investigated the expression patterns of TRPV4 in FCD and the cascade that regulate functional state of TRPV4 in cortical neurons. METHODS: Thirty-nine surgical specimens from FCD patients and 10 age-matched control samples from autopsies were included in this study. Protein expression and distribution were detected by Western blot, immunohistochemistry, and immunofluorescence staining. Calcium imaging was used to detect the TRPV4-mediated Ca(2+) influx in cortical neurons. RESULTS: (1) The protein levels of TRPV4 and of an upstream factor, protein kinase C (PKC), were markedly elevated in FCD. (2) TRPV4 staining was stronger in the dysplastic cortices of FCD and mainly observed in neuronal microcolumns and malformed cells. (3) The activation of TRPV4 was central for [Ca(2+)]i elevation in cortical neurons, and this activity of TRPV4 in cortical neurons was regulated by the PKC, but not the PKA, pathway. CONCLUSION: The overexpression and altered cellular distribution of TRPV4 in FCD suggest that TRPV4 may potentially contribute to the epileptogenesis of FCD.


Assuntos
Malformações do Desenvolvimento Cortical/metabolismo , Canais de Cátion TRPV/metabolismo , Adolescente , Adulto , Animais , Cálcio/metabolismo , Criança , Pré-Escolar , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epilepsia/etiologia , Epilepsia/metabolismo , Epilepsia/patologia , Epilepsia/cirurgia , Feminino , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/cirurgia , Neurônios/metabolismo , Neurônios/patologia , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Adulto Jovem
19.
J Neuropathol Exp Neurol ; 75(1): 61-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26671983

RESUMO

Focal cortical dysplasias (FCDs) are major brain malformations that commonly lead to medically intractable epilepsy. The purinergic ionotropic P2X7 receptor (P2X7R) is an atypical P2X subtype that gates calcium and sodium ions. Previous animal studies have suggested that P2X7R is a contributing factor in epileptogenesis. This study aimed to define the distribution and expression of P2X7R in 35 FCD patient-surgical-resection specimens relative to autopsy control samples (n = 8). Immunohistochemical colocalization assays revealed that P2X7R was primarily expressed in neurons, astrocytes, and microglia. In FCD samples, P2X7R protein levels were increased in abnormal cell types such as dysmorphic neurons and balloon cells, which are characteristic of FCD. By real-time PCR and Western blotting, P2X7R mRNA and protein expression levels were elevated in FCD patient samples vs control samples; P2X7R expression was also higher in FCDII vs FCDIa patient samples. Because interleukin-1ß is a downstream factor of the P2X7R signaling pathway, we determined that there was also moderate-to-strong interleukin-1ß expression in the dysmorphic neurons, balloon cells, and microglia in FCD patient lesions. These results indicate that increasing P2X7R levels may contribute to the pathogenesis of human FCD and that P2X7R represents a potential anti-epileptogenic target.


Assuntos
Córtex Cerebral/química , Córtex Cerebral/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Receptores Purinérgicos P2X7/análise , Receptores Purinérgicos P2X7/biossíntese , Adolescente , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Receptores Purinérgicos P2X7/genética , Adulto Jovem
20.
J Mol Neurosci ; 57(2): 265-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280213

RESUMO

Focal cortical dysplasia (FCD) is known as a common cause of chronic refractory epilepsy, but the underlying mechanisms of the factors that lead to FCD-related epilepsy are unclear. Previous studies have shown that canonical transient receptor potential channels (TRPCs) might be involved in the process of epileptogenesis. Canonical transient receptor potential channel 1 (TRPC1), which is ubiquitously expressed in the brain, has been shown to be involved in epileptiform bust firing in knockout mice. In this study, we examined the expression of TRPC1 in FCD type Ia (FCDIa), FCD type IIa (FCDIIa), and FCD type IIb (FCDIIb) surgical specimens from patients and age-matched autopsy control samples. Real-time quantitative PCR and western blotting indicated that TRPC1 mRNA and protein levels were increased in FCDIa, FCDIIa, and FCDIIb samples compared to control samples. Immunohistochemistry results revealed that TRPC1 was mainly distributed in microcolumns, dysmorphic neurons, and balloon cells. Further double immunofluorescent staining showed that TRPC1 was co-localized with glutamatergic and GABAergic markers. Taken together, our results demonstrate that the overexpression and specific cellular location of TRPC1 might be related to the epileptogenesis of FCD.


Assuntos
Epilepsia/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Canais de Cátion TRPC/metabolismo , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA