Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Skin Res Technol ; 30(8): e13916, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113615

RESUMO

BACKGROUND: Advanced skin cutaneous melanoma (SKCM) is responsible for the majority of skin cancer-related deaths. Apart from the rare BRAF V600F mutation, which can be targeted with specific drugs, there are currently no other novel effective therapeutic targets. METHODS: We used SMR analysis with cis-expressed quantitative trait locus (cis-eQTL) as the exposure variable and SKCM as the outcome variable to identify potential therapeutic targets for SKCM. Colocalization assays and HEIDI tests are used to test whether SKCM risk and gene expression are driven by common SNPs. Replication analysis further validated the findings, and we also constructed protein-protein interaction networks to explore the relationship between the identified genes and known SKCM targets. Drug prediction and molecular docking further validated the medicinal value of drug targets. Transcriptome differential analysis further validated that there were differences between normal tissues and SKCM for the selected targets. RESULTS: We identified 13 genes significantly associated with the risk of SKCM, including five protective genes and eight harmful genes. The HEIDI test and co-localization analysis further indicates a causal association between genes (SOX4, MAFF) and SKCM, categorized as Class 1 evidence targets. The remaining 11 genes, except for HELZ2 show a moderately causal association with SKCM, categorized as Class 2 evidence targets. Target druggability predictions from DGIdb suggest that SOX4, MAFF, ACSF3, CDK10, SPG7, and TCF25 are likely to be future drug targets. CONCLUSION: The study provides genetic evidence for targeting available drug genes for the treatment of SKCM.


Assuntos
Melanoma , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Transcriptoma , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Melanoma Maligno Cutâneo , Mapas de Interação de Proteínas/genética , Simulação de Acoplamento Molecular
2.
Gland Surg ; 13(1): 32-44, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323231

RESUMO

Background: Functional parathyroid cysts (FPCs) are rare and difficult to diagnose with noninvasive methods. The aim of this study was to evaluate the diagnostic value of 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) single-photon emission computed tomography/computerized tomography (SPECT/CT) parathyroid imaging in the diagnosis of FPCs and to account for its performance. Methods: The data from 10 patients with suspected parathyroid cysts (PCs) who underwent 99mTc-MIBI SPECT/CT parathyroid imaging between 2012 and 2022 were retrospectively evaluated. The diagnostic value of 99mTc-MIBI SPECT/CT parathyroid imaging for FPCs was analyzed. Results: Surgical resection was performed in six cases and parathyroid puncture was performed in four cases. The sensitivity of 99mTc-MIBI SPECT/CT for FPCs was 100.0% (3/3), with a specificity of 100.0% (7/7) and an accuracy of 100.0% (10/10). The postoperative pathological findings in three cases of FPCs were parathyroid adenoma, parathyroid adenoma with hemorrhage, and parathyroid adenoma with cystic degeneration, respectively. The diagnostic accuracy of ultrasound and CT for PCs was only 22.22% (2/9) and 25.0% (1/4), respectively, and neither modality could indicate whether the cysts were functional or not. Conclusions: 99mTc-MIBI parathyroid SPECT/CT imaging has a high value in the diagnosis of FPCs in patients with suspected PCs, and an intense ring-shaped accumulation of radioactivity in the cyst wall on 99mTc-MIBI imaging suggests that the patient may have FPCs.

3.
Environ Sci Pollut Res Int ; 31(4): 5013-5031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147259

RESUMO

An increasing amount of sewage has been discharged into water bodies in the progression of industrialization and urbanization, causing serious water pollution. Meanwhile, the increase of nutrients in the water induces water eutrophication and rapid growth of algae. Photocatalysis is a common technique for algal inhibition and sterilization. To improve the utilization of visible light and the conversion efficiency of solar energy, more organic photocatalytic materials have been gradually developed. In addition to ultraviolet light, partial infrared light and visible light could also be used by organic photocatalysts compared with inorganic photocatalysts. Simultaneously, organic photocatalysts also exhibit favorable stability. Most organic photocatalysts can maintain a high degradation rate for algae and bacteria after several cycles. There are various organic semiconductors, mainly including small organic molecules, such as perylene diimide (PDI), porphyrin (TCPP), and new carbon materials (fullerene (C60), graphene (GO), and carbon nanotubes (CNT)), and large organic polymers, such as graphite phase carbon nitride (g-C3N4), polypyrrole (PPy), polythiophene (PTH), polyaniline (PANI), and polyimide (PI). In this review, the classification and synthesis methods of organic photocatalytic materials were elucidated. It was demonstrated that the full visible spectral response (400-750 nm) could be stimulated by modifying organic photocatalysts. Moreover, some problems were summarized based on the research status related to algae and bacteria, and corresponding suggestions were also provided for the development of organic photocatalytic materials.


Assuntos
Nanotubos de Carbono , Polímeros , Pirróis , Luz , Esterilização , Água , Catálise
4.
Lipids Health Dis ; 22(1): 212, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042786

RESUMO

Gastric cancer (GC) is a pressing global clinical issue, with few treatment options and a poor prognosis. The onset and spread of stomach cancer are significantly influenced by changes in lipid metabolism-related pathways. This study aimed to discover a predictive signature for GC using lipid metabolism-related genes (LMRGs) and examine its correlation with the tumor immune microenvironment (TIME). Transcriptome data and clinical information from patients with GC were collected from the TCGA and GEO databases. Data from GC samples were analyzed using both bulk RNA-seq and single-cell sequencing of RNA (scRNA-seq). To identify survival-related differentially expressed LMRGs (DE-LMRGs), differential expression and prognosis studies were carried out. We built a predictive signature using LASSO regression and tested it on the TCGA and GSE84437 datasets. In addition, the correlation of the prognostic signature with the TIME was comprehensively analyzed. In this study, we identified 258 DE-LMRGs in GC and further screened seven survival-related DE-LMRGs. The results of scRNA-seq identified 688 differentially expressed genes (DEGs) between the three branches. Two critical genes (GPX3 and NNMT) were identified using the above two gene groups. In addition, a predictive risk score that relies on GPX3 and NNMT was developed. Survival studies in both the TCGA and GEO datasets revealed that patients categorized to be at low danger had a significantly greater prognosis than those identified to be at high danger. Additionally, by employing calibration plots based on TCGA data, the study demonstrated the substantial predictive capacity of a prognostic nomogram, which incorporated a risk score along with various clinical factors. Within the high-risk group, there was a noticeable abundance of active natural killer (NK) cells, quiescent monocytes, macrophages, mast cells, and activated CD4 + T cells. In summary, a two-gene signature and a predictive nomogram have been developed, offering accurate prognostic predictions for general survival in GC patients. These findings have the potential to assist healthcare professionals in making informed medical decisions and providing personalized treatment approaches.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Metabolismo dos Lipídeos , Sequência de Bases , RNA-Seq , Calibragem , Prognóstico , Microambiente Tumoral/genética
5.
Biochimie ; 214(Pt B): 134-144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442534

RESUMO

Oral dysbiosis contributes to periodontitis and has implications for systemic diseases. Diabetes mellitus is a common metabolic disorder characterized by impaired glucose regulation. AMP-activated protein kinase (AMPK) plays a vital role in regulating glucose uptake and glycogenesis in the liver. This study aimed to investigate the association between periodontal bacteria and diabetes mellitus. A clinical trial was conducted to explore the association between oral bacteria and hyperglycemia. Additionally, we elucidated the molecular mechanisms by which periodontal bacteria cause insulin resistance. In the clinical trial, we discovered significant alterations in the expression levels of Fusobacterium nucleatum (Fn) and Tannerella forsythia (Tf) in patients with diabetes compared with healthy controls. Furthermore, Fn and Tf levels positively correlated with fasting blood glucose and glycated hemoglobin (HbA1C) levels. Moreover, we explored and elucidated the molecular mechanism by which Fusobacterium nucleatum culture filtrate (FNCF) induces cytokine release via the Toll-like receptor 2 (TLR2) signaling pathway in human gingival epithelial Smulow-Glickman (S-G) cells. This study investigated the effects of cytokines on insulin resistance pathways in liver cells. The use of an extracellular signal-regulated kinase (ERK) inhibitor (U0126) demonstrated that FNCF regulates the insulin receptor substrate 1 and protein kinase B (IRS1/AKT) signaling pathway, which affects key proteins involved in hepatic glycogen synthesis, including glycogen synthase kinase-3 beta (GSK3ß) and glycogen synthase (GS), ultimately leading to insulin resistance. These findings suggest that ERK plays a crucial role in hepatocyte insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Resistência à Insulina , Microbiota , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Glucose/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insulina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Diabetes Mellitus Tipo 2/metabolismo
6.
BMC Endocr Disord ; 22(1): 255, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271376

RESUMO

BACKGROUND: The clinicopathological characteristics of solid pseudopapillary tumor (SPT) and pancreatic neuroendocrine neoplasm (pNEN) are different. We, therefore, systematically investigated the performance of the clinicopathological characteristics in distinguishing SPT from pNEN. METHODS: We collected the cases from the Surveillance, Epidemiology, and End Results Program. The International Classification of Diseases for Oncology, third edition (ICD-O-3) for tumors was used to identify patients with pNEN or patients with SPT. To determine the performance of age in combination with gender in distinguishing SPT from pNEN, a nomogram was developed and the performance of this nomogram was evaluated by the receiver operating characteristic curve and the area under the curve (AUC). RESULTS: In the training cohort, 563 patients with pNENs and 30 patients with SPTs were recruited. The logistic regression and receiver operating characteristic curves suggest that age, gender, T-stage, N-stage, and M-stage could discriminate SPT and pNEN. The AUC of age, gender, T-stage, N-stage, and M-stage was 0.82, 0.75, 0.65, 0.69, and 0.70, respectively. Based on the nomogram, we observed that the AUC of age and gender is significantly high than that of the T-stage, N-stage, and M-stage. CONCLUSIONS: The present study proposes a non-invasive nomogram that could aid in the differential diagnosis of pNEN and SPT. This might help the clinicians to distinguish SPT from pNEN and choose the appropriate treatments for the patients.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Diagnóstico Diferencial , Curva ROC
7.
Clin Med Insights Oncol ; 16: 11795549221099853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620244

RESUMO

Background: Distant organ metastasis is the leading cause of death in pancreatic neuroendocrine tumor (pNET) patients. In the present study, we aimed to develop and validate a nomogram that could accurately identify pNET metastasizing to distant organs. Methods: The cases extracted from the Surveillance, Epidemiology, and End Results (SEER) program were assigned to the training cohort and validation cohort. The cases from the Chinese Gastrointestinal Neuroendocrine Tumors program were assigned to the external validation cohort. The strategy was developed with the support of a nomogram, and the predictive value of this strategy was evaluated by the receiver operating characteristic (ROC) curve analysis. Results: In total, 2024 American cases were involved in the present study. Besides, 1450 and 574 patients were allocated into training and internal validation cohorts, respectively. In addition, 122 Chinese patients were assigned to the external validation cohort. The results of the univariate logistic regression analysis suggested that tumor grade, tumor size, and the number of metastatic lymph nodes were the risk of metastasis to distant organs, and these 3 clinicopathological characteristics were used to develop the nomogram. We observed that the accuracy of the nomogram for predicting metastasis to distant organs was 0.797, 0.819, and 0.837 in the training cohort, internal validation cohort, and external validation cohort, respectively. Conclusions: A predictive nomogram was developed and validated, and it showed an acceptable performance in predicting metastasis to distant organs. The results will enable clinicians to identify pNETs, metastasizing to distant organs, and develop an effective individualized therapeutic strategy for these patients.

8.
Cancer Sci ; 113(1): 205-220, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773335

RESUMO

Lung adenocarcinoma (ADC) is the predominant histological type of lung cancer, and radiotherapy is one of the current therapeutic strategies for lung cancer treatment. Unfortunately, biological complexity and cancer heterogeneity contribute to radioresistance development. Karyopherin α2 (KPNA2) is a member of the importin α family that mediates the nucleocytoplasmic transport of cargo proteins. KPNA2 overexpression is observed across cancer tissues of diverse origins. However, the role of KPNA2 in lung cancer radioresistance is unclear. Herein, we demonstrated that high expression of KPNA2 is positively correlated with radioresistance and cancer stem cell (CSC) properties in lung ADC cells. Radioresistant cells exhibited nuclear accumulation of KPNA2 and its cargos (OCT4 and c-MYC). Additionally, KPNA2 knockdown regulated CSC-related gene expression in radioresistant cells. Next-generation sequencing and bioinformatic analysis revealed that STAT1 activation and nuclear phospholipid scramblase 1 (PLSCR1) are involved in KPNA2-mediated radioresistance. Endogenous PLSCR1 interacting with KPNA2 and PLSCR1 knockdown suppressed the radioresistance induced by KPNA2 expression. Both STAT1 and PLSCR1 were found to be positively correlated with dysregulated KPNA2 in radioresistant cells and ADC tissues. We further demonstrated a potential positive feedback loop between PLSCR1 and STAT1 in radioresistant cells, and this PLSCR1-STAT1 loop modulates CSC characteristics. In addition, AKT1 knockdown attenuated the nuclear accumulation of KPNA2 in radioresistant lung cancer cells. Our results collectively support a mechanistic understanding of a novel role for KPNA2 in promoting radioresistance in lung ADC cells.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Núcleo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Tolerância a Radiação , Fator de Transcrição STAT1/metabolismo , alfa Carioferinas/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Fator de Transcrição STAT1/genética , Regulação para Cima , alfa Carioferinas/genética
9.
Arch Biochem Biophys ; 713: 109058, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34627749

RESUMO

Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Polyporales , Proteoma/metabolismo , Animais , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
10.
Insects ; 12(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564267

RESUMO

The gypsy moth, Lymantria dispar, is a polyphagous forest pest worldwide. The baculovirus, Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) is a natural pathogen of L. dispar. The Toll-like receptors (TLR) pathway plays a crucial role in both innate and adaptive immunity in animals. However, The TLR pathway and its underlying immune mechanism against baculovirus in L. dispar have not been explored. In this study, eleven TLRs and five downstream TLR pathway components were identified and characterized from L. dispar. Structural analysis indicated that intracellular Toll/interleukin-1 receptor (TIR) domains of LdTLRs and LdMyD88 contained three conserved motifs, and the 3D structures of TIR domains of LdTLRs possessed similar patterns in components arrangement and spatial conformation. The TLR proteins of L. dispar were placed into five monophyletic groups based on the phylogenetic analysis. LdTLR1, 2, 5, 6, 7, 8 and all identified downstream TLR pathway factors were highly induced upon LdMNPV infection, indicating that the TLR pathway of L. dispar was activated and might play a role in the immune response to LdMNPV infection. Collectively, these results help elucidate the crucial role of the TLR pathway in the immune response of L. dispar against LdMNPV, and offer a foundation for further understanding of innate immunity of the pest.

11.
Aging (Albany NY) ; 13(14): 18806-18826, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285140

RESUMO

Recent evidence suggests that aberrant expression of long non-coding RNA (lncRNA) can drive the initiation and progression of malignancies. However, little is known about the prognostic potential of lncRNA. We aimed at constructing a lncRNA-based signature to improve the prognosis prediction of pancreatic adenocarcinoma (PAAD). The PAAD samples with clinical information were obtained from The Cancer Genome Atlas and International Cancer Genome Consortium. We established an eight-IRlncRNA signature in a training cohort. The prognostic value of eight-IRlncRNA signature was validated in two distinct cohorts when compared to other four prognostic models. We continued to analyze its independence in subgroups by univariate and multivariate Cox regression. We constructed a nomogram for clinicopathologic features and 1-, 3-, and 5-year overall survival performance. Moreover, Gene set enrichment analysis and Gene Set Variation Analysis distinguished the typical functions between high- and low-risk groups. In addition, we further observed the different correlations of immune cell between eight IRlncRNAs. Eight-IRlncRNA signature appears to be a good performer to predict the survival capability of PAAD patients, and the nomogram will enable PAAD patients to be more accurately managed in clinical practice.


Assuntos
Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Nomogramas , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Análise de Sobrevida
12.
Quant Imaging Med Surg ; 10(12): 2297-2306, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33269228

RESUMO

BACKGROUND: The underestimation of renal depth by Tønnesen formula in Gates' method, which has been confirmed by many scholars, leads to the underestimation of both separate glomerular filtration rate (gSGFR) and total glomerular filtration rate (gTGFR). This study aimed to establish the normal reference ranges of renal depth-calibrated gTGFR and gSGFR in Chinese healthy adults, and to analyze the influencing factors. METHODS: Renal depth was measured by CT scan followed by technetium 99m-diethylene triamine pentaacetic acid (99mTc-DTPA) renal dynamic imaging by single-photon emission computed tomography/computed tomography (SPECT/CT) in 329 living kidney donors. The renal depth-calibrated gTGFR and gSGFR were calculated by Gates' method with renal depth measured by CT instead of being calculated by the Tønnesen formula. A general linear model based on age, gender, body height, body weight, and BMI was used to analyze factors influencing gSGFR (L), gSGFR (R) and gTGFR. RESULTS: The average gSGFR (L), gSGFR (R), and gTGFR for patients aged 23-64 years old were 49.3±10.1, 49.9±10.4, and 99.1±18.7 mL/min/1.73 m2, respectively. The gSGFR (L), gSGFR (R) and gTGFR for patients aged 41-50 years old were 26.9-69.3, 27.7-68.8, and 57.5-135.3 mL/min/1.73 m2, respectively, and those for patients aged 51-60 years old were 31.0-61.5, 29.5-63.3, and 64.6-120.7 mL/min/1.73 m2, respectively. gSGFR (L), gSGFR (R) and gTGFR had statistical significance with body height and age (P<0.05); however, there was no significant difference with gender, body weight, and BMI (P>0.05). For each 1 year increase in age, the gSGFR (L), gSGFR (R), and gTGFR decreased by 0.17, 0.28, and 0.44 mL/min/1.73 m2, respectively, while for every 1 cm increase in body height, the gSGFR (L), gSGFR (R), and gTGFR decreased by 0.37, 0.36, and 0.74 mL/min/1.73 m2, respectively. CONCLUSIONS: Normal reference ranges for renal depth-calibrated gSGFR (L), gSGFR (R), and gTGFR were established in healthy Chinese adults aged 23-64 years, and gSGFR (L), gSGFR (R), and gTGFR decreased with age and body height.

13.
Chem Biol Interact ; 331: 109249, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980322

RESUMO

Oxidative stress provides a major contribution to the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) damage. Transforming growth factor ß (TGF-ß) has appeared as a neuroprotective protein in various indignities. However, the TGF-ß mechanism of protective effects against oxidative stress damage in RGCs still undetermined. In our research, we investigated the regulatory mechanisms and potential effects of TGF-ß1 & TGF-ß2 in hydrogen peroxide (H2O2)-stimulated oxidative stress of RGCs in vitro. By a series of cell functional qualitative analysis, such as MTT cell viability assay, wound healing ability assay, apoptosis assay, intracellular ROS detection, immunoblot analysis, intracellular GSH content, and high-resolution respirometry, we illustrated the cell state in oxidative stress-induced injury. Results of protein expression showed that TGF-ß1 & TGF-ß2 was upregulated in RGCs after H2O2 stimulation. Cell functional assays resulted that knockdown of TGF-ß1 & TGF-ß2 reduced survival rate whereas enhanced apoptosis and accumulation of reactive oxygen species (ROS). Especially TGF-ß1 upregulation promoted the protein expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and increased the activity of antioxidant and neuroprotection pathways. Additionally, TGF-ß1 & TGF-ß2 on antioxidant signaling was related to activation of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2), which are stress-response proteins. ROS accumulation followed by the accumulation of hypoxia-inducible factor (HIF-1α) caused mitochondrial damage and led to neurodegeneration. In summary, our results demonstrated that TGF-ß1 preserves RGCs from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-ß1 in retinal neuroprotection-related therapies.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Acetilcisteína/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
14.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899874

RESUMO

A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.


Assuntos
Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Fatores de Crescimento Transformadores/metabolismo
15.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893977

RESUMO

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Uridina Difosfato Glucose Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Polimerização , Proteômica , RNA Interferente Pequeno/metabolismo , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Mol Med ; 24(17): 9737-9751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672400

RESUMO

Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.


Assuntos
Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Bucais/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteômica
17.
J Pharm Biomed Anal ; 186: 113300, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413824

RESUMO

Cancer metastasis is the major cause of death in pancreatic cancer. We have established a pair of pancreatic ductal adenocarcinoma cell line, PANC1 and invasive PANC1-I5, as a model system toinvestigate the metastatic mechanism as well as potential therapeutic targets in pancreatic cancer. We used proteomic analysis based on two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to examine the global protein expression alterations between PANC1 and PANC1-I5. Proteomic study revealed that 88 proteins are differentially expressed between PANC1-I5 and PANC1 cells, and further functional evaluations through protein expression validation, gene knockout, migration and invasion analysis revealed that galectin-1 is one of the potential players in modulating pancreatic cancer metastasis. To conclude, we have identified numerous proteins might be associated with pancreatic cancer invasiveness in the pancreatic cancer model.


Assuntos
Carcinoma Ductal Pancreático/patologia , Galectina 1/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
18.
J Pharm Biomed Anal ; 187: 113142, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32460214

RESUMO

Antrodia Cinnamomea is a fungus species widely used as a herb medicine for hypertension, cancer and handover. Nevertheless, the biological roles of Antrodia Cinnamomea on the molecular mechanism of liver cancer are not entirely understood. To determine whether Antrodia Cinnamomea is able to be used for the treatment of liver cancer and its molecular mechanism, we examined the effect of Antrodia Cinnamomea on the differential proteomic patterns in liver cancer cell lines HepG2 and C3A as well as in Chang's liver cell, a normal liver cell, using quantitative proteomic approach. The proteomic analysis demonstrated that abundance of 82, 125 and 125 proteins was significantly altered in Chang's liver cells, C3A and HepG2, respectively. The experimental outcomes also demonstrated that Antrodia Cinnamomea-induced cytotoxicity in liver cancer cells mostly involved dysregulation of protein folding, cytoskeleton regulation, redox-regulation, glycolysis pathway as well as transcription regulation. Further analysis also revealed that Antrodia Cinnamomea promoted misfolding of intracellular proteins and dysregulate of cellular redox-balance resulting in ER-stress. To sum up our studies demonstrated that the proteomic strategy used in this study offered a tool to investigate the molecular mechanisms of Antrodia Cinnamomea-induced liver cancer cytotoxicity. The proteomic results might be further evaluated as prospective targets in liver cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Polyporales/química , Proteômica , Linhagem Celular , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Oxirredução/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos
19.
BMC Endocr Disord ; 18(1): 73, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340569

RESUMO

BACKGROUND: The present study aims to improve the M-stage classification of pancreatic neuroendocrine neoplasms (pNENs). METHODS: Two thousand six hundred sixty six pNENs were extracted from the Surveillance, Epidemiology, and End Results database to explore the metastatic patterns of pNENs. Metastatic patterns were categorized as single, two, or multiple (three or more) distant organ metastasis. The mean overall survival and hazard rate of different metastatic patterns were calculated by Kaplan-Meier and Cox proportional hazards models, respectively. The discriminatory capability of the modified M-stage classification was evaluated by Harrell's concordance index. RESULTS: The overall survival time significantly decreased with an increasing number of metastatic organs. In addition, pNENs with only liver metastasis had better prognosis when compared to other metastatic patterns. Thus, we modified the M-stage classification (mM-stage) as follows: mM0-stage, tumor without metastasis; mM1-stage, tumor only metastasized to liver; mM2-stage, tumor metastasized to other single distant organ (lung, bone, or brain) or two distant organs; mM3-stage, tumor metastasized to three or more distant organs. Harrell's concordance index showed that the modified M-stage classification had superior discriminatory capability than both the American Joint Committee on Cancer (AJCC) and the European Neuroendocrine Tumor Society (ENETS) M-stage classifications. CONCLUSIONS: The modified M-stage classification is superior to both AJCC and ENETS M-stage classifications in the prognosis of pNENs. In the future, individualized treatment and follow-up programs should be explored for patients with distinct metastatic patterns.


Assuntos
Classificação Internacional de Doenças , Tumores Neuroendócrinos/classificação , Neoplasias Pancreáticas/classificação , Vigilância da População , Idoso , Estudos de Coortes , Bases de Dados Factuais/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/classificação , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/epidemiologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/epidemiologia , Vigilância da População/métodos
20.
J Pharm Biomed Anal ; 160: 344-350, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30114613

RESUMO

Evodiamine is a natural product extracted from herbal plants such as Tetradium which has shown to have anti-fat uptake and anti-proliferation properties. However, the effects of evodiamine on the behavior of thyroid cancers are largely unknown. To determine if evodiamine might be useful in the treatment of thyroid cancer and its cytotoxic mechanism, we analyzed the impact of evodiamine treatment on differential protein expression in human thyroid cancer cell line ARO using lysine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated 77 protein features that were significantly changed in protein expression and revealed evodiamine-induced cytotoxicity in thyroid cancer cells involves dysregulation of protein folding, cytoskeleton, cytoskeleton regulation and transcription control. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of evodiamine-induced cytotoxicity in thyroid cancer cells. The identified targets may be useful for further evaluation as potential targets in thyroid cancer therapy.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Proteômica/métodos , Quinazolinas/farmacologia , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA