Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 16(5): 6579-6588, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275141

RESUMO

Purifying C2H6/C3H8 from a ternary natural gas mixture through adsorption separation is an important but challenging process in the petrochemical industry. To address this challenge, the industry is exploring effective strategies for designing high-performance adsorbents. In this study, we present two metal-organic frameworks (MOFs), DMOF-TF and DMOF-(CF3)2, which have fluorinated pores obtained by substituting linker ligands in the host material. This pore engineering strategy not only provides suitable pore confinement but also enhances the adsorption capacities for C2H6/C3H8 by providing additional binding sites. Theoretical calculations and transient breakthrough experiments show that the introduction of F atoms not only improves the efficiency of natural gas separation but also provides multiple adsorption sites for C2H6/C3H8-framework interactions.

3.
J Am Chem Soc ; 145(26): 14354-14364, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348117

RESUMO

Deep SO2 removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO2 uptake, high separation selectivity (SO2/CO2 and SO2/N2), greatly enhanced SO2 capture capacity, and good reusability. The SO2 binding mechanism has been elucidated by in situ X-ray diffraction/infrared spectroscopy and DFT/GCMC calculations. The single-step SO2 separation from a real quaternary N2/CO2/O2/SO2 flue gas containing trace SO2 is implementable under dry and 50% humid conditions, thus recovering 96% purity. This work may pave the way for future SO2 capture-and-recovery technology by pushing MOF syntheses toward economic cost, scale-up production, and improved physiochemical properties.

4.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178410

RESUMO

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

5.
Angew Chem Int Ed Engl ; 61(26): e202201766, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35313055

RESUMO

The design and creation of soft porous crystals combining regularity and flexibility may promote potential applications for gas storage and separation due to their deformable framework's responsiveness to external stimuli. The flexibility of metal-organic frameworks (MOFs) relies on alterable degrees of freedom that are mainly provided by organic linkers or the junctions linking organic and inorganic building units. Herein, we report a new dynamic MOF whose flexibility originates from an unprecedented tailorable Mn8 O38 -cluster and shows simultaneous coordination geometry changes and ligand migration that are reversibly driven by guest exchange. This provides an extra degree of freedom to the framework's deformation, resulting in three-dimensional variations in the framework that subtly respond to varied aromatic molecules. The gas adsorption behavior of this flexible MOF was evaluated, and the selective separation of light hydrocarbons and Freon gases is achieved.

6.
Inorg Chem ; 60(12): 8456-8460, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085808

RESUMO

A flexible and robust microporous copper(II) metal-organic framework (MOF) based on a methyl-functionalized ligand, namely, [Cu3(µ3-OH)2(L)2(DMF)] (LIFM-ZZ-1; L = 2,2'-dimethyl-4,4'-biphenyldicarboxylic acid and DMF = N,N-dimethylformamide), was constructed. Its sorption performance for the separation of CH4, C2H6, and C3H8 was investigated. LIFM-ZZ-1 showed a breathing behavior that led to a transition between large- and narrow-pore states. The sample also showed outstanding water stability. Gas adsorption experiments revealed that desolvated LIFM-ZZ-1 exhibited higher adsorption capacities for C2H6 and C3H8 (2.80 and 4.06 mmol·g-1) than for CH4 (0.39 mmol·g-1) at 298 K and 1 bar. Breakthrough experiments showed that a CH4/C2H6/C3H8 mixture was completely separated at 298 K, demonstrating the promising potential applications of this material for separating low contents of C2/C3 hydrocarbons from natural gas.

7.
Angew Chem Int Ed Engl ; 60(17): 9680-9685, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33529471

RESUMO

Herein, a dynamic spacer installation (DSI) strategy has been implemented to construct a series of multifunctional metal-organic frameworks (MOFs), LIFM-61/31/62/63, with optimized pore space and pore environment for ethane/ethylene separation. In this respect, a series of linear dicarboxylic acids were deliberately installed in the prototype MOF, LIFM-28, leading to a dramatically increased pore volume (from 0.41 to 0.82 cm3 g-1 ) and reduced pore size (from 11.1×11.1 Å2 to 5.6×5.6 Å2 ). The increased pore volume endows the multifunctional MOFs with much higher ethane adsorption capacity, especially for LIFM-63 (4.8 mmol g-1 ), representing nearly three times as much ethane as the prototypical counterpart (1.7 mmol g-1 ) at 273 K and 1 bar. Meanwhile, the reduced pore size imparts enhanced ethane/ethylene selectivity of the multifunctional MOFs. Theoretical calculations and dynamic breakthrough experiments confirm that the DSI is a promising approach for the rational design of multifunctional MOFs for this challenging task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA