Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 96: 104801, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725855

RESUMO

BACKGROUND: DNA damage repair (DDR) is a critical process that maintains genomic integrity and plays essential roles at both the cellular and organismic levels. Here, we aimed to characterize the DDR profiling of esophageal squamous cell carcinoma (ESCC), investigate the prognostic value of DDR-related features, and explore their potential for guiding personalized treatment strategies. METHODS: We analyzed bulk and single-cell transcriptomics data from 377 ESCC cases from our institution and other publicly available cohorts to identify major DDR subtypes. The heterogeneity in cellular and functional properties, tumor microenvironment (TME) characteristics, and prognostic significance of these DDR subtypes were investigated using immunogenomic analysis and in vitro experiments. Additionally, we experimentally validated a combinatorial immunotherapy strategy using syngeneic mouse models of ESCC. FINDINGS: DDR alteration profiling enabled us to identify two distinct DDR subtypes, DDRactive and DDRsilent, which exhibited independent prognostic values in locoregional ESCC but not in metastatic ESCC. The DDRsilent subtype was characterized by an inflamed but immune-suppressed microenvironment with relatively high immune cell infiltration, abnormal immune checkpoint expression, T-cell exhaustion, and enrichment of cancer-related pathways. Moreover, DDR subtyping indicates that BRCA1 and HFM1 are robust and independent prognostic factors in locoregional ESCC. Finally, we proposed and verified that the concomitant triggering of GITR or blockade of BTLA with PD-1 blockade or cisplatin chemotherapy represents effective combination strategies for high-risk locoregional ESCC tumors. INTERPRETATION: Our discovery of DDR-based molecular subtypes will enhance our understanding of tumor heterogeneity and have significant clinical implications for the therapeutic and management strategies of locoregional ESCC. FUNDING: This study was supported by the National Key R&D Program of China (2021YFC2501000, 2022YFC3401003), National Natural Science Foundation of China (82172882), the Beijing Natural Science Foundation (7212085), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2019PT310027).

2.
J Cancer ; 13(5): 1630-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371314

RESUMO

Background: Metastasis is the leading cause of the high morality of esophageal squamous cell carcinoma (ESCC), so early monitoring metastasis of esophageal cancer is the key to improve the survival rate of ESCC patients. However, there have not been effective biomarkers for predicting metastasis of ESCC patients,it is an urgent need to identify ESCC metastasis-related proteins. Methods: iTRAQ-based proteomic method was performed in highly metastatic 30M cell established in our previous study and the corresponding parental cells KYSE30.The expression of IFI16 was verified using western blotting and immunohistochemistry (IHC). Then, cck8, transwell assay,mouse metastasis experiments were performed to determine the functional role of IFI16 in esophageal cancer. Finally, RAN-Seq, qpcr, transwell assay were used to investigate the underlying mechanism of IFI16 in esophageal cancer metastasis. Results: The data showed that IFI16 was upregulated in 30M cell compared with KYSE30 cell. IFI16 also increased in ESCC tumor compared with non-tumor tissue. Kaplan-Meier survival curve analysis showed that the relapse-free survival (RFS) of patients with high IFI16 level was worse than that of patients with low IFI16 level (P=0.0449). In addition, IFI16 knockdown did not affect the cell growth, but inhibited ESCC cell migration and invasion in ESCC cells. Moreover, IFI16 knockdown suppressed the lung metastasis of 30M cells in mouse models. Finally, we performed an RNA-Seq assay in IFI16-knocking down 30M cells and identified that knocking down IFI16 downregulated the expression of fibroblast growth factor proteins (FGF1, FGF2 etc.). Furthermore, overexpressing FGF1 and FGF2 rescued the lost of migration and invasion ability of 30M mediated by IFI16 knockdown. Conclusion: Our results demonstrated that IFI16 was a key ESCC metastasis-related protein and played a role in ESCC metastasis through promoting the FGF proteins expression.

3.
Cell Death Dis ; 12(11): 1074, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759262

RESUMO

Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12-MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Midkina/genética , Neovascularização Patológica/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA