Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 271(5): 2639-2648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353748

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES: To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS: Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS: The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS: MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.


Assuntos
Comorbidade , Interações Medicamentosas , Atrofia de Múltiplos Sistemas , Polimedicação , Humanos , Atrofia de Múltiplos Sistemas/epidemiologia , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Estudos Transversais , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prevalência , Alemanha/epidemiologia
2.
EBioMedicine ; 89: 104456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36745974

RESUMO

A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.


Assuntos
Doenças do Sistema Nervoso , Humanos , Biomarcadores , Proteômica/métodos , Espectrometria de Massas , Neuroimagem
3.
Life (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073557

RESUMO

TSPO-PET tracers are sensitive to a single-nucleotide polymorphism (rs6971-SNP), resulting in low-, medium- and high-affinity binders (LABs, MABs and HABS), but the clinical relevance of [18F]GE-180 is still unclear. We evaluated the impact of rs6971-SNP on in vivo [18F]GE-180 binding in a healthy brain and in pseudo-reference tissue in neuro-oncological and neurodegenerative diseases. Standardized uptake values (SUVs) of [18F]GE-180-PET were assessed using a manually drawn region of interest in the frontoparietal and cerebellar hemispheres. The SUVs were compared between the LABs, MABs and HABs in control, glioma, four-repeat tauopathy (4RT) and Alzheimer's disease (AD) subjects. Second, the SUVs were compared between the patients and controls within their rs6971-subgroups. After excluding patients with prior therapy, 24 LABs (7 control, 5 glioma, 6 4RT and 6 AD) were analyzed. Age- and sex-matched MABs (n = 38) and HABs (n = 50) were selected. The LABs had lower frontoparietal and cerebellar SUVs when compared with the MABs and HABs, but no significant difference was observed between the MABs and HABs. Within each rs6971 group, no SUV difference between the patients and controls was detected in the pseudo-reference tissues. The rs6971-SNP affects [18F]GE-180 quantification, revealing lower binding in the LABs when compared to the MABs and HABs. The frontoparietal and cerebellar ROIs were successfully validated as pseudo-reference regions.

4.
Front Aging Neurosci ; 13: 661284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054506

RESUMO

Objectives: In recent years several 18F-labeled amyloid PET (Aß-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aß-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aß-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aß-PET were selected. Aß-PET was acquired 0-10 min p.i. (early-phase) and 90-110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aß-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aß-PET was evaluated visually for assessment of Aß-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aß-positive. Early-phase Aß-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77-0.92) and subcortical brain regions (mean R = 0.84, range 0.79-0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aß-PET (mean R = 0.87, range 0.62-0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aß-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aß-status and neuronal injury with a single radiation exposure at a single visit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA