Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(37): 19404-19411, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39213639

RESUMO

Lysine-leucine (LK) peptides have been used as model systems and platforms for 2D material design for decades. LK peptides are amphiphilic sequences designed to bind and fold at hydrophobic surfaces through hydrophobic leucine side chains and hydrophilic lysine side chains extending into the aqueous subphase. The hydrophobic periodicity of the sequence dictates the secondary structure at the interface. This robust design makes them ideal candidates for controlling interfacial chemistry. This study presents the de novo design and characterization of two novel peptides: LRα14 and LHα14, which substitute lysine with arginine and histidine, respectively, in the helical LKα14 sequence. This modification is intended to expand the LK peptide platform to a new basic interfacial chemistry. We explore the stability of the new LRα14 and LHα14 designs with respect to changes in pH and salt concentration in bulk solution and at the interface using circular dichroism (UV-CD) and vibrational sum-frequency generation spectroscopy, respectively. Notably, the structural stability of the peptides remains unaffected across a wide range of pH and ionic strength values. At the same time, the variation of side-chain chemistry leads to a wide spectrum of interfacial water structures. By extension of the LK platform to include arginine and histidine, this study broadens the toolbox for designing tailored interfacial chemistries with applications in material and biomedical sciences.


Assuntos
Peptídeos , Peptídeos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Leucina/química , Tensoativos/química , Dicroísmo Circular , Sequência de Aminoácidos
2.
Phys Chem Chem Phys ; 26(27): 18538-18546, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38888161

RESUMO

Diatoms, unicellular marine organisms, harness short peptide repeats of the protein silaffin to transform silicic acid into biosilica nanoparticles. This process has been a white whale for material scientists due to its potential in biomimetic applications, ranging from medical to microelectronic fields. Replicating diatom biosilicification will depend on a thorough understanding of the silaffin peptide structure during the reaction, yet existing models in the literature offer conflicting views on peptide folding during silicification. In our study, we employed two-dimensional infrared spectroscopy (2DIR) within the amide I region to determine the secondary structure of the silaffin repeat unit 5 (R5), both pre- and post-interaction with silica. The 2DIR experiments are complemented by molecular dynamics (MD) simulations of pure R5 reacting with silicate. Subsequently, theoretical 2DIR spectra calculated from these MD trajectories allowed us to compare calculated spectra with experimental data, and to determine the diverse structural poses of R5. Our findings indicate that unbound R5 predominantly forms ß-strand structures alongside various atypical secondary structures. Post-silicification, there's a noticeable shift: a decrease in ß-strands coupled with an increase in turn-type and bend-type configurations. We theorize that this structural transformation stems from silicate embedding within R5's hydrogen-bond network, prompting the peptide backbone to contract and adapt around the biosilica precursors.


Assuntos
Diatomáceas , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Diatomáceas/química , Estrutura Secundária de Proteína , Peptídeos/química , Fragmentos de Peptídeos , Precursores de Proteínas
3.
J Phys Chem Lett ; 15(18): 4933-4939, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686860

RESUMO

The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.


Assuntos
Amidas , Proteínas , Espectrofotometria Infravermelho , Água , Espectrofotometria Infravermelho/métodos , Água/química , Proteínas/química , Amidas/química , Estrutura Secundária de Proteína , Peptídeos/química
4.
J Phys Chem Lett ; 14(44): 9819-9823, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37889607

RESUMO

The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.


Assuntos
Nanopartículas , Peptídeos , Peptídeos/química , Análise Espectral/métodos , Proteínas/química , Lisina/química
5.
J Phys Chem Lett ; 13(46): 10858-10862, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36383054

RESUMO

The adsorption of protein to nanoparticles plays an important role in toxicity, food science, pharmaceutics, and biomaterial science. Understanding how proteins bind to nanophase surfaces is instrumental for understanding and, ultimately, controlling nanoparticle (NP) biochemistry. Techniques probing the adsorption of proteins at NP interfaces exist; however, these methods have been unable to determine the orientation and folding of proteins at these interfaces. For the first time, we probe in situ with sum frequency scattering vibrational spectroscopy the orientation of model leucine-lysine (LK) peptides adsorbed to NPs. The results show that both α-helical and ß-strand LK peptides bind the particles in an upright orientation, in contrast to the flat orientation of LKs binding to planar surfaces. The different binding geometry is explained by Coulombic forces between peptides across the particle volume.


Assuntos
Peptídeos , Proteínas , Emulsões , Peptídeos/química , Adsorção , Análise Espectral/métodos
6.
J Phys Chem B ; 126(42): 8571-8578, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36194760

RESUMO

Vibrational sum frequency generation (vSFG) spectroscopy is widely used to probe the protein structure at interfaces. Because protein vSFG spectra are complex, they can only provide detailed structural information if combined with computer simulations of protein molecular dynamics and spectra calculations. We show how vSFG spectra can be accurately modeled using a surface-specific velocity-velocity scheme based on ab initio normal modes. Our calculated vSFG spectra show excellent agreement with the experimental sum frequency spectrum of LTα14 peptide and provide insight into the origin of the characteristic α-helical amide I peak. Analysis indicates that the peak shape can be explained largely by two effects: (1) the uncoupled response of amide groups located on opposite sides of the α-helix will have different orientations with respect to the interface and therefore different local environments affecting the local mode vibrations and (2) vibrational splitting from nearest neighbor coupling evaluated as inter-residue vibrational correlation. The conclusion is consistent with frequency mapping techniques with an empirically based ensemble of peptide structures, thus showing how time correlation approaches and frequency mapping techniques can give independent yet complementary molecular descriptions of protein vSFG. These models reveal the sensitive relationship between protein structure and their amide I response, allowing exploitation of the complicated molecular vibrations and their interference to derive the structures of proteins under native conditions at interfaces.


Assuntos
Amidas , Proteínas , Amidas/química , Proteínas/química , Análise Espectral , Peptídeos/química , Simulação de Dinâmica Molecular
7.
J Phys Chem Lett ; 13(31): 7191-7196, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35905449

RESUMO

Determining the secondary and tertiary structures of proteins at aqueous interfaces is crucial for understanding their function, but measuring these structures selectively at the interface is challenging. Here we demonstrate that two-dimensional infrared (2D-IR) spectroscopy of protein stabilized emulsions offers a new route to measuring interfacial protein structure with high levels of detail. We prepared hexadecane/water oil-in-water emulsions stabilized by model LK peptides that are known to fold into either α-helix or ß-sheet conformations at hydrophobic interfaces and measured 2D-IR spectra in a transmission geometry. We saw clear spectral signatures of the peptides folding at the interface, with no detectable residue from remaining bulk peptides. Using 2D spectroscopy gives us access to correlation and dynamics data, which enables structural assignment in cases where linear spectroscopy fails. Using the emulsions allows one to study interfacial spectra with standard transmission geometry spectrometers, bringing the richness of 2D-IR to the interface with no additional optical complexity.


Assuntos
Proteínas , Água , Emulsões/química , Peptídeos , Conformação Proteica , Proteínas/química , Espectrofotometria Infravermelho , Água/química
8.
J Phys Chem Lett ; 13(22): 5025-5029, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652659

RESUMO

Diatoms use peptides based on the protein silaffin to fabricate their silica cell walls. To the interest of material scientists, silaffin peptides can also produce titanium dioxide nanoparticles. Peptide-based synthesis could present an environmentally friendly route to the synthesis of titanium dioxide nanomaterials with potential applications in water splitting and for biocompatible materials design. Two-dimensional nanomaterials have exceptional surface-to-volume ratios and are particularly suited for these applications. We here demonstrate how the silaffin peptide R5 can precipitate free-standing and self-supported sheets of titanium dioxide at the air-water interface, which are stable over tens of micrometers.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Peptídeos , Dióxido de Silício/metabolismo , Titânio , Água
9.
Langmuir ; 38(26): 8087-8093, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35727216

RESUMO

Two-dimensional (2D) materials have attracted attention for potential applications in light harvesting, catalysis, and molecular electronics. Mineral proteins involved in hard tissue biogenesis can produce 2D structures with high fidelity by using sustainable production routes. This study shows that a peptide mimic based on the catalytic triad of the marine sponge protein silicatein catalyzes the formation of nanometer thin and stable sheets of silicon dioxide and titanium dioxide.


Assuntos
Poríferos , Dióxido de Silício , Animais , Catepsinas/química , Catepsinas/metabolismo , Peptídeos/metabolismo , Dióxido de Silício/química , Titânio
10.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 389-412, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33979545

RESUMO

Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.


Assuntos
Proteínas de Membrana , Espectrometria de Massa de Íon Secundário , Peptídeos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
11.
RSC Adv ; 11(45): 27965-27968, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480727

RESUMO

The fabrication of inorganic nanomaterials is important for a wide range of disciplines. While many purely inorganic synthetic routes have enabled a manifold of nanostructures under well-controlled conditions, organisms have the ability to synthesize structures under ambient conditions. For example, magnetotactic bacteria, can synthesize tiny 'compass needles' of magnetite (Fe3O4). Here, we demonstrate the bio-inspired synthesis of extended, self-supporting, nanometer-thin sheets of iron oxide at the water-air interface through self-assembly using small histidine-rich peptides.

12.
Chem Rev ; 120(7): 3420-3465, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31939659

RESUMO

Proteins at interfaces play important roles in cell biology, immunology, bioengineering, and biomimetic material design. Many biological processes are based on interfacial protein action, ranging from cellular communication to immune responses and the protein-driven mineralization of bone. Despite the importance of interfacial proteins, comparatively little is known about their structure. The standard methods for studying crystalline or solution-phase proteins (X-ray diffraction and NMR spectroscopy) are not well-suited for studying proteins at interfaces, and for these proteins we still lack a corresponding technique that can provide the same level of structural resolution. This is not surprising in view of the challenges involved in probing the structure of proteins within monomolecular films assembled at a very thin interface in situ. Vibrational sum-frequency generation (SFG) spectroscopy has the potential to overcome this challenge and investigate the structure and dynamics of proteins at interfaces at the molecular level with subpicosecond time resolution. While SFG studies were initially limited to simple model peptides, the past decade has seen a dramatic advancement of experimental techniques and data analysis methods that has made it possible to also study interfacial proteins and their folding, binding, orientation, hydration, and dynamics. In this review, we first explain the principles of SFG spectroscopy and the experimental and theoretical methods to measure and analyze protein SFG spectra. Then we give an extensive overview of the interfacial proteins studied to date with SFG. We highlight representative examples to demonstrate recent advances in probing the structure of proteins at the interfaces of liquids, membranes, minerals, and synthetic materials.


Assuntos
Peptídeos/química , Proteínas/química , Análise Espectral/métodos , Animais , Humanos , Análise Espectral/instrumentação , Vibração
13.
Crit Rev Biotechnol ; 40(2): 247-264, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918573

RESUMO

Oncolytic viruses (including measles virus) offer an alternative approach to reduce the high mortality rate of late-stage cancer. Several measles virus strains infect and lyse cancer cells efficiently, but the broad application of this therapeutic concept is hindered by the large number of infectious particles required (108-1012 TCID50 per dose). The manufacturing process must, therefore, achieve high titers of oncolytic measles virus (OMV) during upstream production and ensure that the virus product is not damaged during purification by applying appropriate downstream processing (DSP) unit operations. DSP is currently a production bottleneck because there are no specific platforms for OMV. Infectious OMV must be recovered as intact, enveloped particles, and host cell proteins and DNA must be reduced to acceptable levels to meet regulatory guidelines that were developed for virus-based vaccines and gene therapy vectors. Handling such high viral titers and process volumes is technologically challenging and expensive. This review considers the state of the art in OMV purification and looks at promising DSP technologies. We discuss here the purification of other enveloped viruses where such technologies could also be applied to OMV. The development of DSP technologies tailored for enveloped viruses is necessary to produce sufficient titers for virotherapy, which could offer hope to millions of patients suffering from incurable cancer.


Assuntos
Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Humanos , Vacina contra Sarampo/uso terapêutico , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Vírus do Sarampo/fisiologia , Neoplasias/prevenção & controle , Neoplasias/virologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vacinas Atenuadas/uso terapêutico
14.
Membranes (Basel) ; 9(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795406

RESUMO

The therapeutic use of oncolytic measles virus (MV) for cancer treatment requires >108 infectious MV particles per dose in a highly pure form. The concentration/purification of viruses is typically achieved by tangential flow filtration (TFF) but the efficiency of this process for the preparation of MV has not been tested in detail. We therefore investigated the influence of membrane material, feed composition, and pore size or molecular weight cut-off (MWCO) on the recovery of MV by TFF in concentration mode. We achieved the recovery of infectious MV particles using membranes with a MWCO ≤ 300 kDa regardless of the membrane material and whether or not serum was present in the feed. However, serum proteins in the medium affected membrane flux and promoted fouling. The severity of fouling was dependent on the membrane material, with the cellulose-based membrane showing the lowest susceptibility. We found that impurities such as proteins and host cell DNA were best depleted using membranes with a MWCO ≥ 300 kDa. We conclude that TFF in concentration mode is a robust unit operation to concentrate infectious MV particles while depleting impurities such as non-infectious MV particles, proteins, and host cell DNA.

15.
Langmuir ; 35(43): 14092-14097, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31568725

RESUMO

Developing new functional biomaterials requires the ability to simultaneously repel unwanted and guide wanted protein adsorption. Here, we systematically interrogate the factors determining the protein adsorption by comparing the behaviors of different polymeric surfaces, poly(ethylene glycol) and a poly(phosphoester), and five different natural proteins. Interestingly we observe that, at densities comparable to those used in nanocarrier functionalization, the same proteins are either adsorbed (fibrinogen, human serum albumin, and transferrin) or repelled (immunoglobulin G and lysozyme) by both polymers. However, when adsorption takes place, the specific surface dictates the amount and orientation of each protein.


Assuntos
Proteínas Sanguíneas/química , Muramidase/química , Polietilenoglicóis/química , Adsorção
16.
Viruses ; 11(8)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394824

RESUMO

Oncolytic measles virus (MV) is a promising treatment for cancer but titers of up to 1011 infectious particles per dose are needed for therapeutic efficacy, which requires an efficient, robust, and scalable production process. MV is highly sensitive to process conditions, and a substantial fraction of the virus is lost during current purification processes. We therefore conducted forced degradation studies under thermal, pH, chemical, and mechanical stress to determine critical process parameters. We found that MV remained stable following up to five freeze-thaw cycles, but was inactivated during short-term incubation (< 2 h) at temperatures exceeding 35 °C. The infectivity of MV declined at pH < 7, but was not influenced by different buffer systems or the ionic strength/osmolality, except high concentrations of CaCl2 and MgSO4. We observed low shear sensitivity (dependent on the flow rate) caused by the use of a peristaltic pump. For tangential flow filtration, the highest recovery of MV was at a shear rate of ~5700 s-1. Our results confirm that the application of forced degradation studies is important to identify critical process parameters for MV purification. This will be helpful during the early stages of process development, ensuring the recovery of high titers of active MV particles after purification.


Assuntos
Filtração/métodos , Vírus do Sarampo/isolamento & purificação , Vírion/isolamento & purificação , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Humanos , Concentração de Íons de Hidrogênio , Vírus do Sarampo/fisiologia , Fenômenos Mecânicos , Viabilidade Microbiana , Resistência ao Cisalhamento , Estresse Fisiológico , Temperatura , Células Vero
17.
Artigo em Inglês | MEDLINE | ID: mdl-31058145

RESUMO

Oncolytic Measles virus is a promising candidate for cancer treatment, but clinical studies have shown that extremely high doses (up to 1011 TCID50 per dose) are required to effect a cure. Very high titers of the virus must therefore be achieved during production to ensure an adequate supply. We have previously shown that Measles virus can be produced in Vero cells growing on a Cytodex 1 microcarrier in serum-containing medium using a stirred-tank reactor (STR). However, process optimization and further process transfer or scale up requires the identification of critical process parameters, particularly because the use of STRs increases the risk of cell damage and lower product yields due to shear stress. Using a small-scale STR (0.5 L working volume) we found that Measles virus titers are sensitive to agitator-dependent shear, with shear stress ≥0.25 N m-2 reducing the titer by more than four orders of magnitude. This effect was observed in both serum-containing and serum-free medium. At this scale, virus of titers up to 1010 TCID50 mL-1 could be achieved with an average shear stress of 0.1 N m-2. We also found that the aeration method affected the virus titer. Aeration was necessary to ensure a sufficient oxygen supply to the Vero cells, and CO2 was also needed to regulate the pH of the sodium bicarbonate buffer system. Continuous gassing with air and CO2 reduced the virus titer by four orders of magnitude compared to head-space aeration. The manufacture of oncolytic Measles virus in a STR can therefore be defined as a shear-sensitive process, but high titers can nevertheless be achieved by keeping shear stress levels below 0.25 N m-2 and by avoiding extensive gassing of the medium.

18.
Stem Cells Int ; 2018: 2547098, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731775

RESUMO

Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy.

19.
J Am Chem Soc ; 140(8): 2793-2796, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29420020

RESUMO

Proteins can control mineralization of CaCO3 by selectively triggering the growth of calcite, aragonite or vaterite phases. The templating of CaCO3 by proteins must occur predominantly at the protein/CaCO3 interface, yet molecular-level insights into the interface during active mineralization have been lacking. Here, we investigate the role of peptide folding and structural flexibility on the mineralization of CaCO3. We study two amphiphilic peptides based on glutamic acid and leucine with ß-sheet and α-helical structures. Though both sequences lead to vaterite structures, the ß-sheets yield free-standing vaterite nanosheet with superior stability and purity. Surface-spectroscopy and molecular dynamics simulations reveal that reciprocal structuring of calcium ions and peptides lead to the effective synthesis of vaterite by mimicry of the (001) crystal plane.


Assuntos
Materiais Biocompatíveis/química , Carbonato de Cálcio/química , Cálcio/química , Peptídeos/química , Estrutura Molecular , Dobramento de Proteína
20.
Biotechnol Bioeng ; 115(5): 1186-1194, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288575

RESUMO

Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (1010 -1012 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 1010 TCID50 ml-1 .


Assuntos
Espectroscopia Dielétrica/métodos , Vírus do Sarampo/crescimento & desenvolvimento , Vírus Oncolíticos/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos , Cultura de Vírus/métodos , Animais , Chlorocebus aethiops , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA