Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; 111: 107110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411739

RESUMO

INTRODUCTION: Gastrointestinal (GI) toxicity is still an issue within drug development, especially for novel oncology drugs. The identification of GI mucosal damage at an early stage with high sensitivity and specificity across preclinical species and humans remains difficult. To date, in preclinical studies, no qualified mechanistic, diagnostic or prognostic biomarkers exist for GI mucosal toxicity. L-citrulline is one of the most promising biomarker candidates used in clinical settings to quantify enterocyte integrity in various small intestinal diseases. L-citrulline is an intermediate metabolic amino acid produced mainly by functional enterocytes of the small intestine, whereby enterocyte loss will cause a drop in circulating L-citrulline. METHODS: In several repeat-dose toxicity studies, plasma L-citrulline has been evaluated as a potential safety biomarker for intestinal toxicity in beagle dogs and Wistar (Han) rats treated with different oncological drug candidates in drug development. Clinical observations and body weight determinations were performed during the pretreatment, treatment and treatment-free recovery period as well as toxicokinetic, gross and histopathology examinations. The quantitative determination of plasma L-citrulline levels during the pretreatment (only dogs), treatment and treatment-free recovery period were performed using an HPLC MS/MS assay. In cynomolgus monkeys, the first investigations on baseline L-citrulline levels were performed. RESULTS: In dogs, a dose- and exposure-dependent decrease of up to 50% in plasma L-citrulline was seen without histopathological alterations. However, a decrease of more than 50% in comparison to the individual animal pretreatment value of L-citrulline correlated very well with histopathological findings (intestinal crypt necrosis, villus atrophy, enterocyte loss) and clinical signs (bloody faeces and diarrhoea). During a treatment-free recovery period, a trend of increasing levels was observed in dogs. In rats, absolute L-citrulline plasma levels of treated animals decreased compared to the values of the concurrent control group. This decrease also correlated with the histopathological findings in the small intestine (single cell necrosis and mucosa atrophy). Because of a large physiological variation in L-citrulline plasma levels in dogs and rats, a clear cut-off value for absolute L-citrulline levels predictive of intestinal mucosal toxicity was difficult to establish. However, a > 50% decrease in L-citrulline plasma levels during the treatment period strongly correlated with histopathological findings. DISCUSSION: Based on the performed analysis, a longitudinal investigation of L-citrulline plasma levels for individual animals in the control and treatment groups is essential and pretreatment values of L-citrulline levels in rodents would be highly informative. Overall, further cross-species comparison (Cynomolgus monkey, mouse) and implementation in clinical trials as exploratory biomarker is essential to foster the hypothesis and to understand completely the clinical relevance of L-citrulline as a small intestine biomarker.


Assuntos
Citrulina , Espectrometria de Massas em Tandem , Animais , Biomarcadores , Citrulina/toxicidade , Cães , Intestino Delgado , Macaca fascicularis , Camundongos , Ratos , Ratos Wistar
2.
J Med Chem ; 64(14): 10371-10392, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255518

RESUMO

Constitutive activation of the canonical Wnt signaling pathway, in most cases driven by inactivation of the tumor suppressor APC, is a hallmark of colorectal cancer. Tankyrases are druggable key regulators in these malignancies and are considered as attractive targets for therapeutic interventions, although no inhibitor has been progressed to clinical development yet. We continued our efforts to develop tankyrase inhibitors targeting the nicotinamide pocket with suitable drug-like properties for investigating effects of Wnt pathway inhibition on tumor growth. Herein, the identification of a screening hit series and its optimization through scaffold hopping and SAR exploration is described. The systematic assessment delivered M2912, a compound with an optimal balance between excellent TNKS potency, exquisite PARP selectivity, and a predicted human PK compatible with once daily oral dosing. Modulation of cellular Wnt pathway activity and significant tumor growth inhibition was demonstrated with this compound in colorectal xenograft models in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Tanquirases/metabolismo
3.
J Pharmacol Toxicol Methods ; 110: 107068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940165

RESUMO

INTRODUCTION: Gastrointestinal (GI) toxicity is still an issue within drug development, especially for novel oncology drugs. The identification of GI mucosal damage at an early stage with high sensitivity and specificity across preclinical species and humans remains difficult. To date, in preclinical studies, no qualified mechanistic, diagnostic or prognostic biomarkers exist for GI mucosal toxicity. l-citrulline is one of the most promising biomarker candidates used in clinical settings to quantify enterocyte integrity in various small intestinal diseases. l-citrulline is an intermediate metabolic amino acid produced mainly by functional enterocytes of the small intestine, whereby enterocyte loss will cause a drop in circulating l-citrulline. METHODS: In several repeat-dose toxicity studies, plasma l-citrulline has been evaluated as a potential safety biomarker for intestinal toxicity in beagle dogs and Wistar (Han) rats treated with different oncological drug candidates in drug development. Clinical observations and body weight determinations were performed during the pretreatment, treatment and treatment-free recovery period as well as toxicokinetic, gross and histopathology examinations. The quantitative determination of plasma l-citrulline levels during the pretreatment (only dogs), treatment and treatment-free recovery period were performed using an HPLC MS/MS assay. In cynomolgus monkeys, the first investigations on baseline l-citrulline levels were performed. RESULTS: In dogs, a dose- and exposure-dependent decrease of up to 50% in plasma l-citrulline was seen without histopathological alterations. However, a decrease of more than 50% in comparison to the individual animal pretreatment value of l-citrulline correlated very well with histopathological findings (intestinal crypt necrosis, villus atrophy, enterocyte loss) and clinical signs (bloody faeces and diarrhoea). During a treatment-free recovery period, a trend of increasing levels was observed in dogs. In rats, absolute l-citrulline plasma levels of treated animals decreased compared to the values of the concurrent control group. This decrease also correlated with the histopathological findings in the small intestine (single cell necrosis and mucosa atrophy). Because of a large physiological variation in l-citrulline plasma levels in dogs and rats, a clear cut-off value for absolute l-citrulline levels predictive of intestinal mucosal toxicity was difficult to establish. However, a > 50% decrease in l-citrulline plasma levels during the treatment period strongly correlated with histopathological findings. DISCUSSION: Based on the performed analysis, a longitudinal investigation of l-citrulline plasma levels for individual animals in the control and treatment groups is essential and pretreatment values of l-citrulline levels in rodents would be highly informative. Overall, further cross-species comparison (Cynomolgus monkey, mouse) and implementation in clinical trials as exploratory biomarker is essential to foster the hypothesis and to understand completely the clinical relevance of l-citrulline as a small intestine biomarker.


Assuntos
Citrulina , Espectrometria de Massas em Tandem , Animais , Biomarcadores , Citrulina/toxicidade , Cães , Intestino Delgado , Macaca fascicularis , Camundongos , Ratos , Ratos Wistar
4.
Elife ; 52016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27935476

RESUMO

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Complexo Mediador/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Xenoenxertos , Humanos , Hiperplasia/tratamento farmacológico , Camundongos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/toxicidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA