Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863976

RESUMO

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Assuntos
Miócitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miócitos Cardíacos/metabolismo , Ânions/metabolismo , Cátions
2.
Circulation ; 146(15): 1159-1169, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073365

RESUMO

BACKGROUND: Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS: We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS: Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS: Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Cobaias , Miocárdio , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Função Ventricular Esquerda
3.
Eur J Cardiothorac Surg ; 62(2)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35218664

RESUMO

OBJECTIVES: Univentricular malformations are severe cardiac lesions with limited therapeutic options and a poor long-term outcome. The staged surgical palliation (Fontan principle) results in a circulation in which venous return is conducted to the pulmonary arteries via passive laminar flow. We aimed to generate a contractile subpulmonary neo-ventricle from engineered heart tissue (EHT) to drive pulmonary flow actively. METHODS: A three-dimensional tubular EHT (1.8-cm length, 6-mm inner diameter, ca. 1-mm wall thickness) was created by casting human-induced pluripotent stem cell-derived cardiomyocytes (0.9 ml, 18 mio/ml) embedded in a fibrin-based hydrogel around a silicone tube. EHTs were cultured under continuous, pulsatile flow through the silicone tube for 23 days. RESULTS: The constructs started to beat macroscopically at days 8-14 and remained stable in size and shape over the whole culture period. Tubular EHTs showed a coherent beating pattern after 23 days in culture, and isovolumetric pressure measurements demonstrated a coherent pulsatile wave formation with an average frequency of 77 ± 5 beats/min and an average pressure of 0.2 mmHg. Histological analysis revealed cardiomyocytes mainly localized along the inner and outer curvature of the tubular wall with mainly longitudinal alignment. Cell density in the center of the tubular wall was lower. CONCLUSIONS: A simple tube-shaped contractile EHT was generated from human-induced pluripotent stem cells and developed a synchronous beating pattern. Further steps need to focus on optimizing support materials, flow rates and geometry to obtain a construct that creates sufficient pressures to support a directed and pulsatile blood flow.


Assuntos
Miócitos Cardíacos , Engenharia Tecidual , Fibrina , Ventrículos do Coração , Humanos , Silicones , Engenharia Tecidual/métodos
4.
J Mol Cell Cardiol ; 166: 1-10, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35081367

RESUMO

Myocardial injury leads to an irreversible loss of cardiomyocytes (CM). The implantation of human engineered heart tissue (EHT) has become a promising regenerative approach. Previous studies exhibited beneficial, dose-dependent effects of human induced pluripotent stem cell (hiPSC)-derived EHT patch transplantation in a guinea pig model in the subacute phase of myocardial injury. Yet, advanced heart failure often results from a chronic remodeling process. Therefore, from a clinical standpoint it is worthwhile to explore the ability to repair the chronically injured heart. In this study human EHT patches were generated from hiPSC-derived CMs (15 × 106 cells) and implanted epicardially four weeks after injury in a guinea pig cryo-injury model. Cardiac function was evaluated by echocardiography after a follow-up period of four weeks. Hearts revealed large transmural myocardial injuries amounting to 27% of the left ventricle. EHT recipient hearts demonstrated compact muscle islands of human origin in the scar region, as indicated by a positive staining for human Ku80 and dystrophin, remuscularizing 5% of the scar area. Echocardiographic analysis demonstrated no significant functional difference between animals that received EHT patches and animals in the cell-free control group (fractional area change 36% vs. 34%). Thus, EHT patches engrafted in the chronically injured heart but in contrast to the subacute model, grafts were smaller and EHT patch transplantation did not improve left ventricular function, highlighting the difficulties for a regenerative approach.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cicatriz , Cobaias , Ventrículos do Coração , Humanos , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos
5.
Circulation ; 143(20): 1991-2006, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33648345

RESUMO

BACKGROUND: Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose. METHODS: Cardiomyocytes were differentiated from 3 different human induced pluripotent stem cell lines including one reprogrammed under good manufacturing practice conditions. Protocols for human induced pluripotent stem cell expansion, cardiomyocyte differentiation, and EHT generation were adapted to substances available in good manufacturing practice quality. EHT geometry was modified to generate patches suitable for transplantation in a small-animal model and perspectively humans. Repair efficacy was evaluated at 3 doses in a cryo-injury guinea pig model. Human-scale patches were epicardially transplanted onto healthy hearts in pigs to assess technical feasibility. RESULTS: We created mesh-structured tissue patches for transplantation in guinea pigs (1.5×2.5 cm, 9-15×106 cardiomyocytes) and pigs (5×7 cm, 450×106 cardiomyocytes). EHT patches coherently beat in culture and developed high force (mean 4.6 mN). Cardiomyocytes matured, aligned along the force lines, and demonstrated advanced sarcomeric structure and action potential characteristics closely resembling human ventricular tissue. EHT patches containing ≈4.5, 8.5, 12×106, or no cells were transplanted 7 days after cryo-injury (n=18-19 per group). EHT transplantation resulted in a dose-dependent remuscularization (graft size: 0%-12% of the scar). Only high-dose patches improved left ventricular function (+8% absolute, +24% relative increase). The grafts showed time-dependent cardiomyocyte proliferation. Although standard EHT patches did not withstand transplantation in pigs, the human-scale patch enabled successful patch transplantation. CONCLUSIONS: EHT patch transplantation resulted in a partial remuscularization of the injured heart and improved left ventricular function in a dose-dependent manner in a guinea pig injury model. Human-scale patches were successfully transplanted in pigs in a proof-of-principle study.


Assuntos
Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Cobaias , Humanos
6.
Clin Ther ; 42(10): 1892-1910, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32938533

RESUMO

PURPOSE: Adverse cardiovascular drug effects pose a substantial medical risk and represent a common cause of drug withdrawal from the market. Thus, current in vitro assays and in vivo animal models still have shortcomings in assessing cardiotoxicity. A human model for more accurate preclinical cardiotoxicity assessment is highly desirable. Current differentiation protocols allow for the generation of human pluripotent stem cell-derived cardiomyocytes in basically unlimited numbers and offer the opportunity to study drug effects on human cardiomyocytes. The purpose of this review is to provide a brief overview of the current approaches to translate studies with pluripotent stem cell-derived cardiomyocytes from basic science to preclinical risk assessment. METHODS: A review of the literature was performed to gather data on the pathophysiology of cardiotoxicity, the current cardiotoxicity screening assays, stem cell-derived cardiomyocytes, and their application in cardiotoxicity screening. FINDINGS: There is increasing evidence that stem cell-derived cardiomyocytes predict arrhythmogenicity with high accuracy. Cardiomyocyte immaturity represents the major limitation so far. However, strategies are being developed to overcome this hurdle, such as tissue engineering. In addition, stem cell-based strategies offer the possibility to assess structural drug toxicity (eg, by anticancer drugs) on complex models that more closely mirror the structure of the heart and contain endothelial cells and fibroblasts. IMPLICATIONS: Pluripotent stem cell-derived cardiomyocytes have the potential to substantially change how preclinical cardiotoxicity screening is performed. To which extent they will replace or complement current approaches is being evaluated.


Assuntos
Cardiotoxicidade/etiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Arritmias Cardíacas/induzido quimicamente , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/citologia , Humanos , Miócitos Cardíacos/efeitos dos fármacos
7.
Int J Syst Evol Microbiol ; 70(7): 4305-4314, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32579104

RESUMO

A new member of the family Flavobacteriaceae was isolated from the biofilm of a stone at Nordstrand, a peninsula at the German North Sea shore. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain ANORD1T was most closely related to the validly described type strains Polaribacter porphyrae LNM-20T (97.0 %) and Polaribacter reichenbachii KMM 6386T (96.9 % 16S rRNA gene sequence similarity) and clustered with Polaribacter gangjinensis K17-16T (96.0 %). Strain ANORD1T was determined to be mesophilic, Gram-negative, non-motile and strictly aerobic. Optimal growth was observed at 20-30 °C, within a salinity range of 2-7 % sea salt and from pH 7-10. Like other type strains of the genus Polaribacter, ANORD1T was tested negative for flexirubin-type pigments, while carotenoid-type pigments were detected. The DNA G+C content of strain ANORD1T was 30.6 mol%. The sole respiratory quinone detected was menaquinone 6 (MK-6). The major fatty acids identified were C15 : 0, iso-C15 : 0, C15 : 1 ω6c and iso-C15 : 0 3-OH. Based on the polyphasic approach, strain ANORD1T represents a novel species in the genus Polaribacter, with the name Polaribacter septentrionalilitoris sp. nov. being proposed. The type strain is ANORD1T (=DSM 110039T=NCIMB 15081T=MTCC 12685T).


Assuntos
Biofilmes , Flavobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Mar do Norte , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
J Vis Exp ; (145)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30933073

RESUMO

Due to the limited regeneration capacity of the heart in adult mammals, myocardial infarction results in an irreversible loss of cardiomyocytes. This loss of relevant amounts of heart muscle mass can lead to the heart failure. Besides heart transplantation, there is no curative treatment option for the end-stage heart failure. In times of organ donor shortage, organ independent treatment modalities are needed. Left-ventricular assist devices are a promising therapy option, however, especially as destination therapy, limited by its side-effects like stroke, infections and bleedings. In recent years, several cardiac repair strategies including stem cell injection, cardiac progenitors or myocardial tissue engineering have been investigated. Recent improvements in cell biology allow for the differentiation of large amounts of cardiomyocytes derived from human induced pluripotent stem cells (iPSC). One of the cardiac repair strategies currently under evaluation is to transplant artificial heart tissue. Engineered heart tissue (EHT) is a three-dimensional in vitro created cardiomyocyte network, with functional properties of native heart tissue. We have created EHT-patches from hiPSC derived cardiomyocytes. Here we present a protocol for the induction of left ventricular myocardial cryoinjury in a guinea pig, followed by implantation of hiPSC derived EHT on the left ventricular wall.


Assuntos
Implantes Experimentais , Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/patologia , Implantação de Prótese , Animais , Modelos Animais de Doenças , Feminino , Cobaias , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia
10.
Int J Syst Evol Microbiol ; 68(1): 333-340, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205136

RESUMO

A new member of the Flavobacteriales was isolated from the surface of a stone collected on the German North Sea shore. The bacterium, strain ANORD5T, is a mesophilic, chemoheterotrophic aerobic, typical marine bacterium. Optimal growth was observed at 20-30 °C, pH 7.0-8.5 and 1-2 % sea salt. The 16S rRNA gene sequence revealed a distant relationship with the representatives of the Cryomorphaceae, with less than 90 % sequence similarity. Strain ANORD5T forms a cluster together with Owenweeksia hongkongensis UST20020801T (89.9 %), Cryomorpha ignava 1-22T (87.9 %), Luteibaculum oceani CC-AMWY-103BT (88.1 %) and Phaeocystidibacter luteus PG2S01T (87.3 %). Strain ANORD5T has a low DNA G+C content (31 mol%). Based on morphological, physiological and phylogenetic data, strain ANORD5T is considered a type strain of a new species and a new genus of the family Cryomorphaceae for which the name Vicingus serpentipes is proposed. The type strain is ANORD5T (=NCIMB 15042T=DSM 103558T=MTCC 12686T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Mar do Norte , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Circ Res ; 120(9): 1487-1500, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450366

RESUMO

Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.


Assuntos
Cardiologia/métodos , Descoberta de Drogas/métodos , Cardiopatias/terapia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Regeneração , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Fármacos Cardiovasculares/uso terapêutico , Técnicas de Cultura de Células , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Recuperação de Função Fisiológica , Alicerces Teciduais
12.
Sci Transl Med ; 8(363): 363ra148, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807283

RESUMO

Myocardial injury results in a loss of contractile tissue mass that, in the absence of efficient regeneration, is essentially irreversible. Transplantation of human pluripotent stem cell-derived cardiomyocytes has beneficial but variable effects. We created human engineered heart tissue (hEHT) strips from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived endothelial cells. The hEHTs were transplanted onto large defects (22% of the left ventricular wall, 35% decline in left ventricular function) of guinea pig hearts 7 days after cryoinjury, and the results were compared with those obtained with human endothelial cell patches (hEETs) or cell-free patches. Twenty-eight days after transplantation, the hearts repaired with hEHT strips exhibited, within the scar, human heart muscle grafts, which had remuscularized 12% of the infarct area. These grafts showed cardiomyocyte proliferation, vascularization, and evidence for electrical coupling to the intact heart tissue in a subset of engrafted hearts. hEHT strips improved left ventricular function by 31% compared to that before implantation, whereas the hEET or cell-free patches had no effect. Together, our study demonstrates that three-dimensional human heart muscle constructs can repair the injured heart.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Coração/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Proliferação de Células , Cicatriz , Ecocardiografia , Feminino , Cobaias , Ventrículos do Coração , Humanos , Pulmão/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Regeneração , Baço/metabolismo
13.
Cardiovasc Res ; 110(2): 215-26, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26865549

RESUMO

AIMS: Cardiac transplantation is the only curative therapy for end-stage heart failure. Fibrosis is one of the major causes for impaired function of cardiac allografts. MicroRNAs, a class of small non-coding RNAs, play a critical role in the development of cardiovascular disease, but the role of microRNAs in cardiac allograft failure is not well understood. METHODS AND RESULTS: To uncover a role of microRNAs during cardiac graft fibrosis, we generated global microRNA profiles in allogeneic (BALB/c in C57BL/6N) and isogeneic (C57BL/6N in C57BL/6N) murine hearts after transplantation. miR-21 together with cardiac fibrosis was increased in cardiac allografts compared with isografts. Likewise, patients with cardiac rejection after heart transplantation showed increased cardiac miR-21 levels. miR-21 was induced upon treatment with IL-6 in a monocyte cell line. Overexpression of miR-21 in this monocyte cell line activated a fibrotic gene programme and promoted monocyte-to-fibrocyte transition together with activation of chemokine (C-C) motif ligand 2 (monocyte chemoattractant protein 1) via the phosphatase and tensin homologue/activator protein 1 regulatory axis. In vivo, both genetic and pharmacological inhibition of miR-21 successfully reduced fibrosis and fibrocyte accumulation in cardiac allografts. CONCLUSION: Thus, inhibition of miR-21 is a novel strategy to target fibrosis development in cardiac allografts.


Assuntos
Sobrevivência de Enxerto/genética , Cardiopatias/genética , Cardiopatias/patologia , Transplante de Coração , MicroRNAs/genética , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Quimiocinas/genética , Modelos Animais de Doenças , Fibrose/genética , Transplante de Coração/métodos , Interleucina-6/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Transplante Homólogo/métodos
14.
Biochim Biophys Acta ; 1863(7 Pt B): 1749-59, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26597703

RESUMO

Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Assuntos
Cardiopatias/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Regeneração , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Proliferação de Células , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Recuperação de Função Fisiológica , Transplante de Células-Tronco/efeitos adversos
15.
Nat Commun ; 5: 5515, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25463264

RESUMO

Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Proteínas de Transporte/genética , Terapia Genética/métodos , RNA Mensageiro/metabolismo , Animais , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/terapia , Proteínas de Transporte/metabolismo , Dependovirus , Técnicas de Introdução de Genes , Homozigoto , Camundongos
16.
EMBO Mol Med ; 5(7): 1128-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23716398

RESUMO

Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5-6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Proteínas de Transporte/genética , Éxons , Oligorribonucleotídeos Antissenso/uso terapêutico , RNA Nuclear Pequeno/uso terapêutico , Adenoviridae/genética , Processamento Alternativo , Animais , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Técnicas de Introdução de Genes , Terapia Genética , Células HEK293 , Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Oligorribonucleotídeos Antissenso/administração & dosagem , Oligorribonucleotídeos Antissenso/genética , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/administração & dosagem , RNA Nuclear Pequeno/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA