Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775664

RESUMO

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Assuntos
Macrófagos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Macrófagos/imunologia , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Isquemia Miocárdica/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/imunologia , Masculino , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/imunologia , Modelos Animais de Doenças
2.
Cardiovasc Res ; 119(8): 1676-1689, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190844

RESUMO

AIMS: Accumulation of mononuclear phagocytes [monocytes, macrophages, and dendritic cells (DCs)] in the vessel wall is a hallmark of atherosclerosis. Using integrated single-cell analysis of mouse and human atherosclerosis, we here aimed to refine the nomenclature of mononuclear phagocytes in atherosclerotic vessels and to compare their transcriptomic profiles in mouse and human disease. METHODS AND RESULTS: We integrated 12 single-cell RNA-sequencing (scRNA-seq) datasets of immune cells isolated from healthy or atherosclerotic mouse aortas, and data from 11 patients (n = 4 coronary vessels, n = 7 carotid endarterectomy specimens) from two studies. Integration of mouse data identified subpopulations with discrete transcriptomic signatures within previously described populations of aortic resident (Lyve1), inflammatory (Il1b), as well as foamy (Trem2hi) macrophages. We identified unique transcriptomic features distinguishing aortic intimal resident macrophages from atherosclerosis-associated Trem2hi macrophages. Also, populations of Xcr1+ Type 1 classical DCs (cDC1), Cd209a+ cDC2, and mature DCs (Ccr7, Fscn1) with a 'mreg-DC' signature were detected. In humans, we uncovered macrophage and DC populations with gene expression patterns similar to those observed in mice. In particular, core transcripts of the foamy/Trem2hi signature (TREM2, SPP1, GPNMB, CD9) mapped to a specific population of macrophages in human lesions. Comparison of mouse and human data and direct cross-species data integration suggested transcriptionally similar macrophage and DC populations in mice and humans. CONCLUSIONS: We refined the nomenclature of mononuclear phagocytes in mouse atherosclerotic vessels, and show conserved transcriptomic features of macrophages and DCs in atherosclerosis in mice and humans, emphasizing the relevance of mouse models to study mononuclear phagocytes in atherosclerosis.


Assuntos
Aterosclerose , Macrófagos , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/patologia , Células Dendríticas , Análise de Célula Única , Glicoproteínas de Membrana/metabolismo
3.
Infection ; 50(2): 381-394, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34379308

RESUMO

PURPOSE: To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals. METHODS: In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany. RESULTS: 7554 HCWs participated, 2.2% of whom tested positive for anti-SARS-CoV-2 antibodies. Multivariate analysis revealed increased COVID-19 risk for nurses (3.1% seropositivity, 95% CI 2.5-3.9%, p = 0.012), staff working on COVID-19 units (4.6% seropositivity, 95% CI 3.2-6.5%, p = 0.032), males (2.4% seropositivity, 95% CI 1.8-3.2%, p = 0.019), and HCWs reporting high-risk exposures to infected patients (5.5% seropositivity, 95% CI 4.0-7.5%, p = 0.0022) or outside of work (12.0% seropositivity, 95% CI 8.0-17.4%, p < 0.0001). Smoking was a protective factor (1.1% seropositivity, 95% CI 0.7-1.8% p = 0.00018) and the symptom taste disorder was strongly associated with COVID-19 (29.8% seropositivity, 95% CI 24.3-35.8%, p < 0.0001). An unbiased decision tree identified subgroups with different risk profiles. Working from home as a preventive measure did not protect against SARS-CoV-2 infection. A PCR-testing strategy focused on symptoms and high-risk exposures detected all larger COVID-19 outbreaks. CONCLUSION: Awareness of the identified COVID-19 risk factors and successful surveillance strategies are key to protecting HCWs against SARS-CoV-2, especially in settings with limited vaccination capacities or reduced vaccine efficacy.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Pessoal de Saúde , Humanos , Masculino , Pandemias/prevenção & controle , Fatores de Risco , SARS-CoV-2
4.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944072

RESUMO

BACKGROUND: Tissue-resident macrophages have mixed developmental origins. They derive in variable extent from yolk sac (YS) hematopoiesis during embryonic development. Bone marrow (BM) hematopoietic progenitors give rise to tissue macrophages in postnatal life, and their contribution increases upon organ injury. Since the phenotype and functions of macrophages are modulated by the tissue of residence, the impact of their origin and developmental paths has remained incompletely understood. METHODS: In order to decipher cell-intrinsic macrophage programs, we immortalized hematopoietic progenitors from YS and BM using conditional HoxB8, and carried out an in-depth functional and molecular analysis of differentiated macrophages. RESULTS: While YS and BM macrophages demonstrate close similarities in terms of cellular growth, differentiation, cell death susceptibility and phagocytic properties, they display differences in cell metabolism, expression of inflammatory markers and inflammasome activation. Reduced abundance of PYCARD (ASC) and CASPASE-1 proteins in YS macrophages abrogated interleukin-1ß production in response to canonical and non-canonical inflammasome activation. CONCLUSIONS: Macrophage ontogeny is associated with distinct cellular programs and immune response. Our findings contribute to the understanding of the regulation and programming of macrophage functions.


Assuntos
Medula Óssea/patologia , Inflamação/patologia , Macrófagos/patologia , Saco Vitelino/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Células HEK293 , Células-Tronco Hematopoéticas/patologia , Proteínas de Homeodomínio/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transcriptoma/genética
5.
Eur J Immunol ; 51(1): 250-252, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761616

RESUMO

In mouse myocardial infarction, we combined lineage tracing of cardiac macrophages, mapping their ontogeny, with an analysis of their phenotype and phagocytic functions. While embryo-derived macrophages were most abundant in homeostasis, bone marrow-derived MHC-IIlo macrophages increased in both numbers and phagocytic capacity to clear necrotic cardiomyocytes early after ischemia/perfusion injury.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Embrião de Mamíferos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Fagocitose/imunologia
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372158

RESUMO

Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.


Assuntos
Infertilidade Masculina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Epididimo/imunologia , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Testículo/imunologia , Testículo/metabolismo
7.
Visc Med ; 36(5): 417-420, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33173797

RESUMO

During the current COVID-19 pandemic, the triage, assessment, and management of patients presenting to the emergency department with critical conditions has become -challenging. The clinical features of COVID-19 are heterogeneous and subtle in many cases. They may easily be overlooked in the case of other acute diseases. Gastrointestinal symptoms are common in patients with COVID-19 as SARS-CoV-2 is able to enter gastrointestinal epithelial cells. However, these complaints can also be caused by a COVID-19-independent concomitant abdominal pathology. Therefore, patients with acute abdominal pain and fever need to be assessed very thoroughly. Based on a clinical case, we present our approach of managing emergency patients with acute abdomen and concomitant suspicion of -COVID-19.

8.
Nat Commun ; 11(1): 4549, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917889

RESUMO

Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease.


Assuntos
Artérias/citologia , Arterite/imunologia , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Macrófagos/fisiologia , Envelhecimento/fisiologia , Angiotensina II/administração & dosagem , Angiotensina II/imunologia , Animais , Artérias/fisiologia , Medula Óssea/fisiologia , Transplante de Medula Óssea , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Regeneração/fisiologia , Análise de Célula Única , Quimeras de Transplante
9.
J Allergy Clin Immunol ; 146(1): 128-136.e4, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32425269

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can manifest as a viral-induced hyperinflammation with multiorgan involvement. Such patients often experience rapid deterioration and need for mechanical ventilation. Currently, no prospectively validated biomarker of impending respiratory failure is available. OBJECTIVE: We aimed to identify and prospectively validate biomarkers that allow the identification of patients in need of impending mechanical ventilation. METHODS: Patients with COVID-19 who were hospitalized from February 29 to April 9, 2020, were analyzed for baseline clinical and laboratory findings at admission and during the disease. Data from 89 evaluable patients were available for the purpose of analysis comprising an initial evaluation cohort (n = 40) followed by a temporally separated validation cohort (n = 49). RESULTS: We identified markers of inflammation, lactate dehydrogenase, and creatinine as the variables most predictive of respiratory failure in the evaluation cohort. Maximal IL-6 level before intubation showed the strongest association with the need for mechanical ventilation, followed by maximal CRP level. The respective AUC values for IL-6 and CRP levels in the evaluation cohort were 0.97 and 0.86, and they were similar in the validation cohort (0.90 and 0.83, respectively). The calculated optimal cutoff values during the course of disease from the evaluation cohort (IL-6 level > 80 pg/mL and CRP level > 97 mg/L) both correctly classified 80% of patients in the validation cohort regarding their risk of respiratory failure. CONCLUSION: The maximal level of IL-6, followed by CRP level, was highly predictive of the need for mechanical ventilation. This suggests the possibility of using IL-6 or CRP level to guide escalation of treatment in patients with COVID-19-related hyperinflammatory syndrome.


Assuntos
Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Infecções por Coronavirus/sangue , Interleucina-6/sangue , Pneumonia Viral/sangue , Respiração Artificial , Adolescente , Adulto , Idoso , Betacoronavirus , Proteína C-Reativa/análise , COVID-19 , Infecções por Coronavirus/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/terapia , Insuficiência Respiratória/sangue , Insuficiência Respiratória/terapia , Insuficiência Respiratória/virologia , SARS-CoV-2 , Adulto Jovem
10.
J Cell Mol Med ; 16(1): 152-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21362129

RESUMO

Erythropoietin (EPO) was shown to have protective effects after myocardial infarction (MI) by neovascularization and antiapoptotic mechanisms. Beside direct receptor-dependent mechanisms, mobilization and homing of bone marrow-derived cells (BMCs) may play a pivotal role in this regard. In this study, we intended to track different subpopulations of BMCs and to assess serially myocardial perfusion changes in EPO-treated mice after MI. To allow tracking of BMCs, we used a chimeric mouse model. Therefore, mice (C57BL/6J) were sublethally irradiated, and bone marrow (BM) from green fluorescent protein transgenic mice was transplanted. Ten weeks later coronary artery ligation was performed to induce MI. EPO was injected for 3 days with a total dose of 5000 IU/kg. Subpopulations (CD31, c-kit, CXCR-4 and Sca-1) of EGFP(+) cells were studied in peripheral blood, bone marrow and hearts by flow cytometry. Myocardial perfusion was serially investigated in vivo by pinhole single-photon emission computed tomography (SPECT) at days 6 and 30 after MI. EPO-treated animals revealed an enhanced mobilization of BMCs into peripheral blood. The numbers of these cells in BM remained unchanged. Homing of all BMCs subpopulations to the ischaemic myocardium was significantly increased in EPO-treated mice. Among the investigated subpopulations, EPO predominantly affected migration of CXCR-4(+) (4.3-fold increase). Repetitively SPECT analyses revealed a reduction of perfusion defects after EPO treatment over time. Our study shows that EPO treatment after MI enhances the migration capacity of BMCs into ischaemic tissue, which may attribute to an improved perfusion and reduced size of infarction, respectively.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Movimento Celular/fisiologia , Eritropoetina/farmacologia , Infarto do Miocárdio/patologia , Animais , Células da Medula Óssea/citologia , Separação Celular/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/sangue
11.
Cardiovasc Res ; 93(2): 330-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22080594

RESUMO

AIMS: Parathyroid hormone (PTH) administration after myocardial infarction (MI) is known to attenuate ischaemic cardiomyopathy. This effect mainly resulted from an increase in mobilization and homing of CD34+/CD45+ cells into the ischaemic myocardium. PTH-related stem cell mobilization was shown to be related to endogenous granulocyte-colony stimulating factor (G-CSF) release. The aim of our study is to determine the role of G-CSF on the cardioprotective effects of PTH. METHODS AND RESULTS: G-CSF +/+ (C57BL/6) and G-CSF -/- mice were treated with PTH for 6 days after inducing a MI. The myocardial homing factor stromal cell-derived factor-1 (SDF-1) was analysed on day 2 with enzyme-linked immunosorbent assay. Stem cell populations in peripheral blood and hearts were examined by FACS on days 6 and 2, respectively. Cardiac function and immunohistochemistry were investigated on day 6 and day 30. PTH treatment resulted in a significant increase in CD45+/CD34+ cells in peripheral blood in G-CSF +/+ but not in G-CSF -/- mice. However, a significant increase in SDF-1 and enhanced migration of CD45+/CD34+ cells into the ischaemic myocardium was revealed after PTH administration in both G-CSF +/+ and G-CSF -/- mice. Enhanced stem cell homing was associated with improved cardiac function and post-MI survival after PTH treatment. Furthermore, infarct size, wall thickness, and neovascularization showed a significant improvement in both groups 30 days after MI. CONCLUSION: The cardioprotective effects of PTH were shown to be independent of endogenous G-CSF release and therefore from stem cell mobilization. This puts more emphasis on the role of stem cell homing into ischaemic myocardium.


Assuntos
Fator Estimulador de Colônias de Granulócitos/fisiologia , Coração/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Animais , Apoptose , Células da Medula Óssea/fisiologia , Movimento Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isquemia Miocárdica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA