Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Med ; 30(4): 1044-1053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584166

RESUMO

Programmed cell death protein 1 (PD-1) inhibitors have modest efficacy as a monotherapy in hepatocellular carcinoma (HCC). A personalized therapeutic cancer vaccine (PTCV) may enhance responses to PD-1 inhibitors through the induction of tumor-specific immunity. We present results from a single-arm, open-label, phase 1/2 study of a DNA plasmid PTCV (GNOS-PV02) encoding up to 40 neoantigens coadministered with plasmid-encoded interleukin-12 plus pembrolizumab in patients with advanced HCC previously treated with a multityrosine kinase inhibitor. Safety and immunogenicity were assessed as primary endpoints, and treatment efficacy and feasibility were evaluated as secondary endpoints. The most common treatment-related adverse events were injection-site reactions, observed in 15 of 36 (41.6%) patients. No dose-limiting toxicities or treatment-related grade ≥3 events were observed. The objective response rate (modified intention-to-treat) per Response Evaluation Criteria in Solid Tumors 1.1 was 30.6% (11 of 36 patients), with 8.3% (3 of 36) of patients achieving a complete response. Clinical responses were associated with the number of neoantigens encoded in the vaccine. Neoantigen-specific T cell responses were confirmed in 19 of 22 (86.4%) evaluable patients by enzyme-linked immunosorbent spot assays. Multiparametric cellular profiling revealed active, proliferative and cytolytic vaccine-specific CD4+ and CD8+ effector T cells. T cell receptor ß-chain (TCRß) bulk sequencing results demonstrated vaccination-enriched T cell clone expansion and tumor infiltration. Single-cell analysis revealed posttreatment T cell clonal expansion of cytotoxic T cell phenotypes. TCR complementarity-determining region cloning of expanded T cell clones in the tumors following vaccination confirmed reactivity against vaccine-encoded neoantigens. Our results support the PTCV's mechanism of action based on the induction of antitumor T cells and show that a PTCV plus pembrolizumab has clinical activity in advanced HCC. ClinicalTrials.gov identifier: NCT04251117 .


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vacinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Vacinas/uso terapêutico
2.
Sci Adv ; 9(44): eadh4379, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910620

RESUMO

Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Produtos Biológicos/metabolismo , Células Matadoras Naturais , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
3.
Curr Opin HIV AIDS ; 18(4): 191-208, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37265268

RESUMO

PURPOSE OF REVIEW: Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS: The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY: The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.


Assuntos
COVID-19 , Infecções por HIV , HIV-1 , Animais , Humanos , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Pandemias , HIV-1/genética , COVID-19/terapia , Anticorpos Monoclonais/genética
4.
Front Immunol ; 14: 1138609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999023

RESUMO

Despite numerous clinically available vaccines and therapeutics, aged patients remain at increased risk for COVID-19 morbidity. Furthermore, various patient populations, including the aged can have suboptimal responses to SARS-CoV-2 vaccine antigens. Here, we characterized vaccine-induced responses to SARS-CoV-2 synthetic DNA vaccine antigens in aged mice. Aged mice exhibited altered cellular responses, including decreased IFNγ secretion and increased TNFα and IL-4 secretion suggestive of TH2-skewed responses. Aged mice exhibited decreased total binding and neutralizing antibodies in their serum but significantly increased TH2-type antigen-specific IgG1 antibody compared to their young counterparts. Strategies to enhance vaccine-induced immune responses are important, especially in aged patient populations. We observed that co-immunization with plasmid-encoded adenosine deaminase (pADA)enhanced immune responses in young animals. Ageing is associated with decreases in ADA function and expression. Here, we report that co-immunization with pADA enhanced IFNγ secretion while decreasing TNFα and IL-4 secretion. pADA expanded the breadth and affinity SARS-CoV-2 spike-specific antibodies while supporting TH1-type humoral responses in aged mice. scRNAseq analysis of aged lymph nodes revealed that pADA co-immunization supported a TH1 gene profile and decreased FoxP3 gene expression. Upon challenge, pADA co-immunization decreased viral loads in aged mice. These data support the use of mice as a model for age-associated decreased vaccine immunogenicity and infection-mediated morbidity and mortality in the context of SARS-CoV-2 vaccines and provide support for the use of adenosine deaminase as a molecular adjuvant in immune-challenged populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Fator de Necrose Tumoral alfa , Interleucina-4 , Adenosina Desaminase , Imunização , Anticorpos Antivirais , Modelos Animais de Doenças
5.
Front Immunol ; 14: 1072810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911698

RESUMO

Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress in vivo melanoma proliferation and induced significant systemic cytokine activation. A novel second-generation ACC TA99-HL2-KOA1, with retained IL-2Rß/γ binding and attenuated but preserved IL-2Rα binding, induced lower systemic cytokine activation with non-inferior protection in murine tumor studies. Transcriptomic analyses demonstrated an upregulation of Type I interferon responsive genes, particularly ISG15, in dendritic cells, macrophages and monocytes following TA99-HL2-KOA1 treatment. Characterization of additional ACCs in combination with cancer vaccines will likely be an important area of research for treating melanoma and other types of cancer.


Assuntos
Melanoma , Nanopartículas , Vacinas de DNA , Camundongos , Animais , Citocinas , Anticorpos , DNA
6.
Mol Ther Oncolytics ; 28: 249-263, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36915911

RESUMO

Glioblastoma multiforme (GBM) is among the most difficult cancers to treat with a 5-year survival rate less than 5%. An immunotherapeutic vaccine approach targeting GBM-specific antigen, EGFRvIII, previously demonstrated important clinical impact. However, immune escape variants were reported in the trial, suggesting that multivalent approaches targeting GBM-associated antigens may be of importance. Here we focused on multivalent in vivo delivery of synthetic DNA-encoded bispecific T cell engagers (DBTEs) targeting two GBM-associated antigens, EGFRvIII and HER2. We designed and optimized an EGFRvIII-DBTE that induced T cell-mediated cytotoxicity against EGFRvIII-expressing tumor cells. In vivo delivery in a single administration of EGFRvIII-DBTE resulted in durable expression over several months in NSG mice and potent tumor control and clearance in both peripheral and orthotopic animal models of GBM. Next, we combined delivery of EGFRvIII-DBTEs with an HER2-targeting DBTE to treat heterogeneous GBM tumors. In vivo delivery of dual DBTEs targeting these two GBM-associated antigens exhibited enhanced tumor control and clearance in a heterogeneous orthotopic GBM challenge, while treatment with single-target DBTE ultimately allowed for tumor escape. These studies support that combined delivery of DBTEs, targeting both EGFRvIII and HER2, can potentially improve outcomes of GBM immunotherapy, and such multivalent approaches deserve additional study.

7.
mBio ; 14(1): e0339322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728420

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/metabolismo , Células Matadoras Naturais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
8.
Cancer Prev Res (Phila) ; 16(3): 163-173, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534786

RESUMO

Chronic hepatitis C can lead to cirrhosis and hepatocellular carcinoma. We studied the safety and immunogenicity of a novel therapeutic hepatitis C virus (HCV) genotype 1a/1b consensus DNA vaccine, INO-8000, encoding HCV NS3, NS4A, NS4B, and NS5A proteins alone or co-administered with DNA-encoding IL12 (INO-9012), a human cytokine that stimulates cellular immune function, in individuals with chronic hepatitis C. This was a phase I, multisite dose-escalation trial with an expansion cohort evaluating doses of 0, 0.3, 1.0, and 3.0 mg of INO-9012 (IL12 DNA) as an addition to 6.0 mg of (INO-8000; HCV DNA vaccine). Vaccines were administered by intramuscular injection followed by electroporation at study entry and at weeks 4, 12, and 24. HCV-specific CD4+ and CD8+ T-cell immune responses were measured by IFNγ ELISpot and flow cytometry-based assays. Transient, mild-to-moderate injection site reactions unrelated to IL12 DNA dose were common. Increases in HCV-specific IFNγ production occurred in 15/20 (75%) participants. Increases in the frequency of HCV-specific CD4+ and CD8+ T cells occurred at all dose levels, with the greatest increases seen at 1.0 mg of INO-9012. HCV-specific CD8+ and CD4+ T-cell activities increased in 16/18 (89%) and 14/17 (82%) participants with available data, respectively. The vaccine regimen was safe and induced HCV-specific CD4+ and CD8+ cellular immune responses of modest magnitude in most HCV-infected participants. The addition of 1.0 mg of IL12 DNA provided the best enhancement of immune responses. The vaccine regimen had little effect on controlling HCV viremia. PREVENTION RELEVANCE: The administration of IL12 DNA along with a hepatitis C viral antigen DNA vaccine enhanced the HCV-specific immune responses induced by the vaccine in individuals with chronic hepatitis C, an important cause of hepatocellular carcinoma. IL12 could be an effective adjuvant in vaccines targeting HCV and other oncogenic viruses.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Vacinas de DNA , Humanos , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Proteínas não Estruturais Virais/genética , Neoplasias Hepáticas/prevenção & controle , Hepatite C/prevenção & controle , Hepacivirus/genética , DNA , Interleucina-12
9.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36509287

RESUMO

Despite advances in ovarian cancer (OC) therapy, recurrent OC remains a poor-prognosis disease. Because of the close interaction between OC cells and the tumor microenvironment (TME), it is important to develop strategies that target tumor cells and engage components of the TME. A major obstacle in the development of OC therapies is the identification of targets with expression limited to tumor surface to avoid off-target interactions. The follicle-stimulating hormone receptor (FSHR) has selective expression on ovarian granulosa cells and is expressed on 50%-70% of serous OCs. We generated mAbs targeting the external domain of FSHR using in vivo-expressed FSHR vector. By high-throughput flow analysis, we identified multiple clones and downselected D2AP11, a potent FSHR surface-targeted mAb. D2AP11 identifies important OC cell lines derived from tumors with different mutations, including BRCA1/2, and lines resistant to a wide range of therapies. We used D2AP11 to develop a bispecific T cell engager. In vitro addition of PBMCs and T cells to D2AP11-TCE induced specific and potent killing of different genetic and immune escape OC lines, with EC50s in the ng/ml range, and attenuated tumor burden in OC-challenged mouse models. These studies demonstrate the potential utility of biologics targeting FSHR for OC and perhaps other FSHR-positive cancers.


Assuntos
Neoplasias Ovarianas , Receptores do FSH , Humanos , Animais , Camundongos , Feminino , Receptores do FSH/genética , Receptores do FSH/metabolismo , Recidiva Local de Neoplasia , Imunoterapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Anticorpos Monoclonais/uso terapêutico , Imunidade Adaptativa , Microambiente Tumoral
10.
Mol Ther Oncolytics ; 26: 289-301, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36090479

RESUMO

Glioblastoma is an aggressive tumor with poor survival rates. Bispecific T cell engagers (BTEs) against different cancers are in various stages of clinical development. Toxicity resulting from cytokine release syndrome and the short half-life of BTEs, which necessitates continuous infusion, complicating delivery and increasing costs, are major challenges in the field. Here we describe the development of in vivo DNA-launched BTEs (dBTEs) with highly focused targeting of interleukin-13 receptor α2 (IL-13Rα2), a glioblastoma cell-surface target. We developed 4 BTEs targeting 2 epitopes of IL-13Rα2 and studied how heavy-light chain orientation affects BTE function. The dBTEs induced T cell activation, cytokine production, and tumor cytolysis in the presence of IL-13Rα2+ tumor cells, but we observed unique patterns of immune activation. We found a strong correlation between granzyme B secretion and dBTE-induced cytolysis of specific and nonspecific tumors. We down-selected dBTE PB01-forward based on lower cytokine induction profile and highest activation specificity. In vivo, dBTE PB01-forward demonstrated an improved half-life versus intravenous recombinant BTE delivery. In an orthotopic glioblastoma model, dBTE PB01-forward controlled tumor growth, improving animal survival, supporting the hypothesis that the blood-brain barrier does not affect the function of systemically delivered dBTE. Further study of PB01-forward for targeting glioblastoma and other IL-13Rα2+ cancers is warranted.

11.
J Immunol ; 209(1): 118-127, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750334

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Assuntos
COVID-19 , Vacinas Virais , Adenosina Desaminase/genética , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2
12.
Nat Commun ; 13(1): 695, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121758

RESUMO

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/ultraestrutura , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , ELISPOT , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
13.
Mol Ther Oncolytics ; 24: 218-229, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35071745

RESUMO

Latent Epstein-Barr virus (EBV) infection is associated with several types of cancer. Several clinical studies have targeted EBV antigens as immune therapeutic targets with limited efficacy of EBV malignancies, suggesting that additional targets might be important. BamHI-A rightward frame 1 (BARF1) is an EBV antigen that is highly expressed in EBV+ nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC). BARF1 antigen can transform human epithelial cells in vivo. BARF1-specific antibodies and cytotoxic T cells were detected in some EBV+ NPC patients. However, BARF1 has not been evaluated as an antigen in the context of therapeutic immunization. Its possible importance in this context is unclear. Here, we developed a synthetic-DNA-based expression cassette as immunotherapy targeting BARF1 (pBARF1). Immunization with pBARF1 induced potent antigen-specific humoral and T cell responses in vivo. Immunization with pBARF1 plasmid impacted tumor progression through the induction of CD8+ T cells in novel BARF1+ carcinoma models. Using an in vivo imaging system, we observed that pBARF1-immunized animals rapidly cleared cancer cells. We demonstrated that pBARF1 can induce antigen-specific immune responses that can impact cancer progression. Further study of this immune target is likely important as part of therapeutic approaches for EBV+ malignancies.

14.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34774754

RESUMO

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , Goma de Mascar , Cricetinae , Cricetulus , Procedimentos Cirúrgicos de Citorredução , Humanos , Ligação Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
15.
PLoS Pathog ; 17(11): e1010034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762717

RESUMO

Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.


Assuntos
Antígenos CD/metabolismo , Antígeno CD56/imunologia , Infecções por HIV/patologia , HIV/fisiologia , Células Matadoras Naturais/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Carga Viral , Viremia/patologia , Antígenos CD/genética , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Células Matadoras Naturais/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Viremia/imunologia , Viremia/metabolismo , Viremia/virologia
16.
iScience ; 24(7): 102699, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124612

RESUMO

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector (AAV6) expressing human ACE-2 (AAV6.2FF-hACE2). We validated this model using a previously described synthetic DNA vaccine plasmid, INO-4800 (pS). Intranasal instillation of AAV6.2FF-hACE2 resulted in robust hACE2 expression in the respiratory tract. pS induced robust cellular and humoral responses. Vaccinated animals were challenged with 105 TCID50 SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) and euthanized four days post-challenge to assess viral load. One immunization resulted in 50% protection and two immunizations were completely protective. Overall, the AAV6.2FF-hACE2 mouse transduction model represents an easily accessible, genetically diverse mouse model for wild-type SARS-CoV-2 infection and preclinical evaluation of potential interventions.

17.
Mol Ther Oncolytics ; 21: 278-287, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34141866

RESUMO

Neoantigens are tumor-specific antigens that arise due to somatic mutations in the DNA of tumor cells. They represent ideal targets for cancer immunotherapy since there is minimal risk for on-target, off-tumor toxicities. Additionally, these are foreign antigens that should be immunogenic due to lack of central immune tolerance. Tumor neoantigens are predominantly passenger mutations, which do not contribute to tumorigenesis. In cases of multi-focal or metastatic tumors, different foci can have significantly different mutation profiles. This suggests that it is important to target as many neoantigens as possible to better control tumors and target multi-focal tumors within the same patient. Herein, we report a study targeting up to 40 neoantigens using a single DNA plasmid. We observed significant plasticity in the epitope strings arranged in the vaccine with regard to immune induction and tumor control. Different vaccines elicited T cell responses against multiple epitopes on the vaccine string and controlled growth of multi-focal, heterogeneous tumors in a therapeutic tumor challenge. Additionally, the multi-epitope antigens induced long-term immunity and rejected a tumor re-challenge several weeks after the final vaccination. These data provide evidence that DNA-encoded long antigen strings can be an important tool for immunotherapeutic vaccination against neoantigens with implications for other in vivo-delivered antigen strings.

18.
Genes Cancer ; 12: 51-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884106

RESUMO

Prostate cancer is a prevalent cancer in men and consists of both indolent and aggressive phenotypes. While active surveillance is recommended for the former, current treatments for the latter include surgery, radiation, chemo and hormonal therapy. It has been observed that the recurrence in the treated patients is high and results in castration resistant prostate cancer for which treatment options are limited. This scenario has prompted us to consider immunotherapy with synthetic DNA vaccines, as this approach can generate antigen-specific tumor-killing immune cells. Given the multifocal and heterogeneous nature of prostate cancer, we hypothesized that synthetic DNA vaccines targeting different prostate specific antigens are likely to induce broader and improved immunity who are at high risk as well as advanced clinical stage of prostate cancer, compared to a single antigen approach. Utilizing a bioinformatics approach, synthetic enhanced DNA vaccine (SEV) constructs were generated against STEAP1, PAP, PARM1, PSCA, PCTA and PSP94. Synthetic enhanced vaccines for prostate cancer antigens were shown to elicit antigen-specific immune responses in mice and the anti-tumor activity was evident in a prostate tumor challenge mouse model. These studies support further evaluation of the DNA tools for immunotherapy of prostate cancer and perhaps other cancers.

19.
Hum Vaccin Immunother ; 17(5): 1288-1293, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175656

RESUMO

VGX-3100 is an investigational DNA-based immunotherapy being developed as an alternative to surgery and ablation for cervical High-Grade Squamous Intraepithelial Lesion (HSIL) with the aim of preserving reproductive health while treating precancerous disease. Response durability up to 1.5 y following dosing is now reported.Histologic regression and HPV16 and/or HPV 18 (HPV16/18) clearance were previously demonstrated in a randomized, placebo-controlled, double-blind trial and reported for 6 months after the last dose of VGX-3100 or placebo. The presence of HPV16/18, Pap smear diagnoses, and immunogenicity longer-term responses were assessed at 18 months after the last dose.91% (32/35) VGX-3100-treated women, whose cervical HSIL regressed and avoided excision at 6 months following study treatment completion, had no detectable HPV16/18 at 18 months following treatment completion. These results were comparable to those for women who received placebo and then later underwent surgery. For VGX-3100 recipients who regressed at 6 months following study treatment completion and avoided excision during the trial, Pap testing showed no HSIL recurrence at 18 months following VGX-3100 treatment. VGX-3100-induced cellular immune responses specific for HPV 16/18 E6/E7 remained higher than for placebo control recipients at 18 months.In women with cervical HSIL who responded to VGX-3100 and were able to avoid surgery, clinical outcomes were comparable to the placebo control group which underwent conventional surgical treatment. These findings extend the understanding of the durability of the treatment effect of VGX-3100 up to 1.5 y and support that VGX-3100 could be used as an alternative to surgery.


Assuntos
Infecções por Papillomavirus , Lesões Intraepiteliais Escamosas , Neoplasias do Colo do Útero , Feminino , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Recidiva Local de Neoplasia , Papillomaviridae , Vacinas contra Papillomavirus , Vacinas de DNA
20.
Cancer Immunol Res ; 8(11): 1354-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913042

RESUMO

Cytolytic T cells (CTL) play a pivotal role in surveillance against tumors. Induction of CTL responses by vaccination may be challenging, as it requires direct transduction of target cells or special adjuvants to promote cross-presentation. Here, we observed induction of robust CTL responses through electroporation-facilitated, DNA-launched nanoparticle vaccination (DLnano-vaccines). Electroporation was observed to mediate transient tissue apoptosis and macrophage infiltration, which were deemed essential to the induction of CTLs by DLnano-vaccines through a systemic macrophage depletion study. Bolus delivery of protein nano-vaccines followed by electroporation, however, failed to induce CTLs, suggesting direct in vivo production of nano-vaccines may be required. Following these observations, new DLnano-vaccines scaffolding immunodominant melanoma Gp100 and Trp2 epitopes were designed and shown to induce more potent and consistent epitope-specific CTL responses than the corresponding DNA monomeric vaccines or CpG-adjuvanted peptide vaccines. DNA, but not recombinant protein, nano-vaccinations induced CTL responses to these epitopes and suppressed melanoma tumor growth in mouse models in a CD8+ T-cell-dependent fashion. Further studies to explore the use of DLnano-vaccines against other cancer targets and the biology with which they induce CTLs are important.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Nanopartículas/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Vacinas de DNA/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Vacinas de DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA