Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(1): 118-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667643

RESUMO

PURPOSE: To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS: A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and blood T 1 $$ {\mathrm{T}}_1 $$ relaxation time ( T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specific T 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS: Simulated and phantom experiments showed a strong dependence on AMS and FA ( R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence ( R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION: Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.


Assuntos
Circulação Coronária , Imagem de Perfusão do Miocárdio , Humanos , Reprodutibilidade dos Testes , Circulação Coronária/fisiologia , Miocárdio , Frequência Cardíaca , Imagens de Fantasmas , Imagem de Perfusão do Miocárdio/métodos
2.
Magn Reson Med ; 87(3): 1184-1206, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825741

RESUMO

On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative MR Study Group, this article provides an overview of considerations for the development, validation, qualification, and dissemination of quantitative MR (qMR) methods. This process is framed in terms of two central technical performance properties, i.e., bias and precision. Although qMR is confounded by undesired effects, methods with low bias and high precision can be iteratively developed and validated. For illustration, two distinct qMR methods are discussed throughout the manuscript: quantification of liver proton-density fat fraction, and cardiac T1 . These examples demonstrate the expansion of qMR methods from research centers toward widespread clinical dissemination. The overall goal of this article is to provide trainees, researchers, and clinicians with essential guidelines for the development and validation of qMR methods, as well as an understanding of necessary steps and potential pitfalls for the dissemination of quantitative MR in research and in the clinic.


Assuntos
Imageamento por Ressonância Magnética , Terapia com Prótons , Viés , Espectroscopia de Ressonância Magnética , Prótons , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 79(2): 890-899, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28504360

RESUMO

PURPOSE: The oxygen extraction fraction (OEF) is an important biomarker for tissue-viability. MRI enables noninvasive estimation of the OEF based on the blood-oxygenation-level-dependent (BOLD) effect. Quantitative OEF-mapping is commonly applied using least-squares regression (LSR) to an analytical tissue model. However, the LSR method has not yet become clinically established due to the necessity for long acquisition times. Artificial neural networks (ANNs) recently have received increasing interest for robust curve-fitting and might pose an alternative to the conventional LSR method for reduced acquisition times. This study presents in vivo OEF mapping results using the conventional LSR and the proposed ANN method. METHODS: In vivo data of five healthy volunteers and one patient with a primary brain tumor were acquired at 3T using a gradient-echo sampled spin-echo (GESSE) sequence. The ANN was trained with simulated BOLD data. RESULTS: In healthy subjects, the mean OEF was 36 ± 2% (LSR) and 40 ± 1% (ANN). The OEF variance within subjects was reduced from 8% to 6% using the ANN method. In the patient, both methods revealed a distinct OEF hotspot in the tumor area, whereas ANN showed less apparent artifacts in surrounding tissue. CONCLUSION: In clinical scan times, the ANN analysis enables OEF mapping with reduced variance, which could facilitate its integration into clinical protocols. Magn Reson Med 79:890-899, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Oxigênio/sangue , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Masculino , Adulto Jovem
4.
Heart Fail Rev ; 22(4): 415-430, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28623475

RESUMO

Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Miocárdio/patologia , Biópsia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Tomada de Decisão Clínica , Meios de Contraste/administração & dosagem , Fibrose , Humanos , Interpretação de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA