Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6655): 313-319, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37384673

RESUMO

Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.


Assuntos
Chaetomium , Montagem e Desmontagem da Cromatina , Cromatina , Histonas , Nucleossomos , Cromatina/química , DNA/química , Histonas/química , Nucleossomos/química , Microscopia Crioeletrônica , Chaetomium/química , Chaetomium/ultraestrutura
2.
Nat Commun ; 13(1): 6737, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347890

RESUMO

The essential deamination of adenosine A34 to inosine at the wobble base is the individual tRNA modification with the greatest effects on mRNA decoding, empowering a single tRNA to translate three different codons. To date, many aspects of how eukaryotic deaminases specifically select their multiple substrates remain unclear. Here, using cryo-EM, we present the structure of a eukaryotic ADAT2/3 deaminase bound to a full-length tRNA, revealing that the enzyme distorts the anticodon loop, but in contrast to the bacterial enzymes, selects its substrate via sequence-independent contacts of eukaryote-acquired flexible or intrinsically unfolded motifs distal from the conserved catalytic core. A gating mechanism for substrate entry to the active site is identified. Our multi-step tRNA recognition model yields insights into how RNA editing by A34 deamination evolved, shaped the genetic code, and directly impacts the eukaryotic proteome.


Assuntos
Adenosina Desaminase , Eucariotos , Adenosina Desaminase/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Inosina/metabolismo , RNA de Transferência/metabolismo , Anticódon/genética
3.
Science ; 375(6576): 50-57, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34822310

RESUMO

Recognition of the intron branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is a critical event during spliceosome assembly. In mammals, BS sequences are poorly conserved, and unambiguous intron recognition cannot be achieved solely through a base-pairing mechanism. We isolated human 17S U2 snRNP and reconstituted in vitro its adenosine 5´-triphosphate (ATP)­dependent remodeling and binding to the pre­messenger RNA substrate. We determined a series of high-resolution (2.0 to 2.2 angstrom) structures providing snapshots of the BS selection process. The substrate-bound U2 snRNP shows that SF3B6 stabilizes the BS:U2 snRNA duplex, which could aid binding of introns with poor sequence complementarity. ATP-dependent remodeling uncoupled from substrate binding captures U2 snRNA in a conformation that competes with BS recognition, providing a selection mechanism based on branch helix stability.


Assuntos
Íntrons , Precursores de RNA/química , Ribonucleoproteína Nuclear Pequena U2/química , Spliceossomos/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo , Transativadores/química , Transativadores/metabolismo
4.
Nat Struct Mol Biol ; 27(3): 233-239, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066964

RESUMO

Genome regulation requires control of chromosome organization by SMC-kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3-Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Šresolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Šresolution crystal structure of a nucleotide-free Smc1-Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1-Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3-Scc1 interface.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Coesinas
5.
EMBO Rep ; 20(11): e48451, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31535454

RESUMO

Stable capsid structures of viruses protect viral RNA while they also require controlled disassembly for releasing the viral genome in the host cell. A detailed understanding of viral disassembly processes and the involved structural switches is still lacking. This process has been extensively studied using tobacco mosaic virus (TMV), and carboxylate interactions are assumed to play a critical part in this process. Here, we present two cryo-EM structures of the helical TMV assembly at 2.0 and 1.9 Å resolution in conditions of high Ca2+ concentration at low pH and in water. Based on our atomic models, we identify the conformational details of the disassembly switch mechanism: In high Ca2+ /acidic pH environment, the virion is stabilized between neighboring subunits through carboxyl groups E95 and E97 in close proximity to a Ca2+ binding site that is shared between two subunits. Upon increase in pH and lower Ca2+ levels, mutual repulsion of the E95/E97 pair and Ca2+ removal destabilize the network of interactions between adjacent subunits at lower radius and release the switch for viral disassembly.


Assuntos
Modelos Moleculares , Vírus do Mosaico do Tabaco/fisiologia , Montagem de Vírus , Cálcio/química , Capsídeo/química , Concentração de Íons de Hidrogênio , Fenótipo , Reprodutibilidade dos Testes , Vírion
6.
Sci Adv ; 5(7): eaaw2326, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309145

RESUMO

The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.


Assuntos
Complexos Multiproteicos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência/genética , Anticódon/química , Sítios de Ligação , Domínio Catalítico , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos/química , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , RNA de Transferência/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS Genet ; 11(12): e1005677, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26624285

RESUMO

Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.


Assuntos
Morfogênese/genética , Polinucleotídeo 5'-Hidroxiquinase/biossíntese , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Animais , Modelos Animais de Doenças , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Pâncreas/metabolismo , Pâncreas/patologia , Polinucleotídeo 5'-Hidroxiquinase/genética , RNA Ribossômico 28S/genética , Ribossomos/patologia , Peixe-Zebra
8.
Nat Struct Mol Biol ; 22(11): 914-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479198

RESUMO

SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Iniciação Traducional da Cadeia Peptídica , Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Microscopia Crioeletrônica , Dictyostelium/genética , GTP Fosfo-Hidrolases/química , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Fatores de Alongamento de Peptídeos , Proteínas/química , Ribonucleoproteína Nuclear Pequena U5 , Subunidades Ribossômicas Maiores de Eucariotos/química
9.
J Biol Chem ; 285(13): 9525-9534, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20110359

RESUMO

Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Tubulina (Proteína)/química , Trifosfato de Adenosina/química , Animais , Benzoquinonas/farmacologia , Encéfalo/metabolismo , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Temperatura Alta , Lactamas Macrocíclicas/farmacologia , Luz , Microscopia de Interferência/métodos , Microtúbulos/metabolismo , Desnaturação Proteica , Espectrofotometria/métodos , Suínos
10.
RNA ; 16(2): 299-306, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20038631

RESUMO

In eubacteria, translation of defective messenger RNAs (mRNAs) produces truncated polypeptides that stall on the ribosome. A quality control mechanism referred to as trans-translation is performed by transfer-messenger RNA (tmRNA), a specialized RNA acting as both a tRNA and an mRNA, associated with small protein B (SmpB). So far, a clear view of the structural movements of both the protein and RNA necessary to perform accommodation is still lacking. By using a construct containing the tRNA-like domain as well as the extended helix H2 of tmRNA, we present a cryo-electron microscopy study of the process of accommodation. The structure suggests how tmRNA and SmpB move into the ribosome decoding site after the release of EF-Tu.GDP. While two SmpB molecules are bound per ribosome in a preaccommodated state, our results show that during accommodation the SmpB protein interacting with the small subunit decoding site stays in place while the one interacting with the large subunit moves away. Relative to canonical translation, an additional movement is observed due to the rotation of H2. This suggests that the larger movement required to resume translation on a tmRNA internal open reading frame starts during accommodation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Imageamento Tridimensional , Substâncias Macromoleculares , Modelos Moleculares , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA