Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 591(7851): 639-644, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33461210

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Biópsia , COVID-19/sangue , Estudos de Coortes , Imunofluorescência , Humanos , Imunidade Humoral/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Pessoa de Meia-Idade , Mutação , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
2.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878071

RESUMO

NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-ß). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus.IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-ß-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Regulação para Cima/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Células A549 , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/imunologia , Humanos , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Células Matadoras Naturais/patologia , Receptores Imunológicos , Células Vero , Infecção por Zika virus/patologia
3.
Cell Rep ; 17(4): 949-956, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760325

RESUMO

Herpes simplex virus 1 (HSV1) is a ubiquitous human pathogen that utilizes variable mechanisms to evade immune surveillance. The glycosylphosphatidylinositol (GPI) anchoring pathway is a multistep process in which a myriad of different proteins are covalently attached to a GPI moiety to be presented on the cell surface. Among the different GPI-anchored proteins there are many with immunological importance. We present evidence that the HSV1-encoded miR H8 directly targets PIGT, a member of the protein complex that covalently attaches proteins to GPI in the final step of GPI anchoring. This results in a membrane down-modulation of several different immune-related, GPI-anchored proteins, including ligands for natural killer-activating receptors and the prominent viral restriction factor tetherin. Thus, we suggest that by utilizing just one of dozens of miRNAs encoded by HSV1, the virus can counteract the host immune response at several key points.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Herpesvirus Humano 1/genética , Evasão da Resposta Imune , MicroRNAs/metabolismo , Aciltransferases/metabolismo , Antígenos CD/metabolismo , Citotoxicidade Imunológica , Regulação para Baixo/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , MicroRNAs/genética
4.
Cell Rep ; 15(11): 2331-9, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27264178

RESUMO

Cells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I. This induction is mediated by IRF3, which bound to an ISRE element present in the human, but not mouse, CEACAM1 promoter. Furthermore, we demonstrate that, upon induction, CEACAM1 suppresses both HCMV and influenza viruses in an SHP2-dependent process and achieves this broad antiviral efficacy by suppressing mTOR-mediated protein biosynthesis. Finally, we show that CEACAM1 also inhibits viral spread in ex vivo human decidua organ culture.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Citomegalovirus/fisiologia , Orthomyxoviridae/fisiologia , Animais , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Proteína DEAD-box 58/metabolismo , DNA Viral/metabolismo , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Técnicas de Cultura de Órgãos , Biossíntese de Proteínas , Receptores Imunológicos , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
5.
Cell Rep ; 15(7): 1542-1553, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27160907

RESUMO

HCMV is a highly sophisticated virus that has developed various mechanisms for immune evasion and viral dissemination throughout the body (partially mediated by neutrophils). NK cells play an important role in elimination of HCMV-infected cells. Both neutrophils and NK cells utilize similar sets of chemokine receptors to traffic, to and from, various organs. However, the mechanisms by which HCMV attracts neutrophils and not NK cells are largely unknown. Here, we show a unique viral protein, vCXCL1, which targets three chemokine receptors: CXCR1 and CXCR2 expressed on neutrophils and CXCR1 and CX3CR1 expressed on NK cells. Although vCXCL1 attracted both cell types, neutrophils migrated faster and more efficiently than NK cells through the binding of CXCR2. Therefore, we propose that HCMV has developed vCXCL1 to orchestrate its rapid systemic dissemination through preferential attraction of neutrophils and uses alternative mechanisms to counteract the later attraction of NK cells.


Assuntos
Citomegalovirus/metabolismo , Células Matadoras Naturais/metabolismo , Neutrófilos/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8B/metabolismo , Antígenos CD/metabolismo , Movimento Celular , Quimiocina CXCL1/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Humanos , Células Matadoras Naturais/citologia , Ligantes , Neutrófilos/citologia , Ligação Proteica
6.
PLoS Pathog ; 10(2): e1003963, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586166

RESUMO

The human cytomegalovirus (HCMV) is extremely prevalent in the human population. Infection by HCMV is life threatening in immune compromised individuals and in immune competent individuals it can cause severe birth defects, developmental retardation and is even associated with tumor development. While numerous mechanisms were developed by HCMV to interfere with immune cell activity, much less is known about cellular mechanisms that operate in response to HCMV infection. Here we demonstrate that in response to HCMV infection, the expression of the short form of the RNA editing enzyme ADAR1 (ADAR1-p110) is induced. We identified the specific promoter region responsible for this induction and we show that ADAR1-p110 can edit miR-376a. Accordingly, we demonstrate that the levels of the edited-miR-376a (miR-376a(e)) increase during HCMV infection. Importantly, we show that miR-376a(e) downregulates the immune modulating molecule HLA-E and that this consequently renders HCMV infected cells susceptible to elimination by NK cells.


Assuntos
Adenosina Desaminase/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/genética , Edição de RNA/genética , Western Blotting , Citomegalovirus , Humanos , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA