Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Lab Invest ; 104(10): 102124, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241616
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273316

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-ß1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.


Assuntos
Técnicas de Cocultura , Proteína Rica em Cisteína 61 , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/genética , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Camundongos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
3.
J Gastrointest Oncol ; 15(4): 1613-1626, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279956

RESUMO

Background: Cancer stem cells (CSCs) play a crucial role in tumor recurrence and metastasis, which are the primary causes of death in patients with hepatocellular carcinoma (HCC). Currently, no drug effectively blocks the recurrence and metastasis of liver cancer, leading to a poor prognosis for patients. To enhance treatment outcomes, there is an urgent need to investigate the molecular mechanisms behind the recurrence and progression of liver cancer, with the aim of identifying effective therapeutic targets. Targeting HCC stemness can improve the prognosis of patients with HCC. Abnormal spindle-like microcephaly-associated protein (ASPM) plays a pivotal role in regulating neurogenesis and brain size, which is a centrosome protein. ASPM has been implicated in tumorigenesis and tumor progression, but its regulatory role in HCC stemness is not well understood. This study aims to investigate the role of ASPM in liver cancer stemness and elucidate its potential molecular mechanisms. Methods: Bioinformatics analysis was used to study the expression of ASPM and its clinical significance in HCC. In vitro and in vivo assays were conducted to clarify the impact of ASPM knockdown on HCC cell stemness. The correlation between ASPM and the Wnt/ß-catenin pathway was examined through analysis of online databases and in vitro experiments. Results: The bioinformatics analysis revealed significant upregulation of ASPM was significantly upregulated in HCC samples, with expression correlating with poor prognosis. In vitro experimental data confirmed elevated ASPM expression in HCC cells compared to normal hepatocytes. Knockdown of ASPM suppressed HCC cell growth, clone formation, spheroid formation, migration, invasion, and the expression of CSC markers CD133 and CD44. This also inhibited the activation of the Wnt/ß-catenin pathway. Reactivation of this pathway partially reversed the biological changes induced by ASPM knockdown in HCC cells. Additionally, in vivo data demonstrated that ASPM downregulation reduced the size and weight of xenografts in BALB/c mice, along with decreased expression of CSC markers. Conclusions: These findings suggest that ASPM promotes HCC stemness and progression through the Wnt/ß-catenin pathway. Targeting ASPM or the Wnt/ß-catenin pathway may be a promising strategy to prevent HCC chemoresistance and recurrence, ultimately improving patient prognosis.

4.
J Gastrointest Oncol ; 15(4): 1957-1961, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279969

RESUMO

Background: Colorectal cancer (CRC) is the third most common form of cancer worldwide in terms of incidence and the second in terms of mortality with 1.9 million new cases and 930,000 deaths reported in 2020. Corresponding numbers in the U.S. are 150,000 and 53,000, respectively. Although the majority of CRCs in the U.S. and other high-income countries are in adults aged 50 and older, there has recently been a considerable rise in early-onset CRC, so that 17,930 cases in the U.S. (12% of total cases) are diagnosed in individuals younger than age 50, representing the equivalent of 49 new cases per day. Early diagnosis is essential to improve the prognosis and reduce the number of cancer-related deaths. Here we report the case of a young pregnant woman, who was diagnosed with CRC with the help of the ColoAlert™ multitargeted stool test. Case Description: In this case study, a young pregnant woman presented with obstipation, rectal bleeding, and pelvic pain, symptoms that were ascribed to her pregnancy. On her own, she performed a multitarget stool test (ColoAlert™) that showed occult blood as well as a very high level of human DNA, both known to be associated with presence of CRC. After testing, she was referred for rectoscopy (during her 21st week of pregnancy), which showed an exophytic, semicircular tumor 10 cm from anus in the rectosigmoid junction. Histology confirmed adenocarcinoma in rectum. Further examination showed perirectal infiltration as well as metastases to both liver and adrenal gland. Conclusions: This case report shows the importance of considering CRC as a possible diagnosis in young people. It also demonstrates the usefulness of multitarget stool testing that in this case led to the endoscopic confirmation of the diagnosis followed by an immediate start of potential life-saving treatment.

5.
Metabolites ; 14(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39195504

RESUMO

Metabolic health is tightly regulated by neuro-hormonal control, and systemic metabolic dysfunction may arise from altered function of the hypothalamic-anterior pituitary axis (HAPA). Ancient experimental observations of hypothalamic obesity (HO) and liver cirrhosis occurring among animals subjected to hypothalamic injury can now be explained using the more recent concepts of lipotoxicity and metabolic dysfunction-associated steatotic liver disease (MASLD). Lipotoxicity, the range of abnormalities resulting from the harmful effects of fatty acids accumulated in organs outside of adipose tissue, is the common pathogenic factor underlying closely related conditions like hypothalamic syndrome, HO, and MASLD. The hormonal deficits and the array of metabolic and metabolomic disturbances that occur in cases of HO are discussed, along with the cellular and molecular mechanisms that lead, within the MASLD spectrum, from uncomplicated steatotic liver disease to steatohepatitis and cirrhosis. Emphasis is placed on knowledge gaps and how they can be addressed through novel studies. Future investigations should adopt precision medicine approaches by precisely defining the hormonal imbalances and metabolic dysfunctions involved in each individual patient with HO, thus paving the way for tailored management of MASLD that develops in the context of altered HAPA.

6.
J Cell Commun Signal ; 18(2): e12039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946722

RESUMO

Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.

7.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892009

RESUMO

The kidney injury molecule (KIM)-1 is shed from proximal tubular cells in acute kidney injury (AKI), relaying tubular epithelial proliferation. Additionally, KIM-1 portends complex immunoregulation and is elevated after exposure to lipopolysaccharides. It thus may represent a biomarker in critical illness, sepsis, and sepsis-associated AKI (SA-AKI). To characterise and compare KIM-1 in these settings, we analysed KIM-1 serum concentrations in 192 critically ill patients admitted to the intensive care unit. Irrespective of kidney dysfunction, KIM-1 serum levels were significantly higher in patients with sepsis compared with other critical illnesses (191.6 vs. 132.2 pg/mL, p = 0.019) and were highest in patients with urogenital sepsis, followed by liver failure. Furthermore, KIM-1 levels were significantly elevated in critically ill patients who developed AKI within 48 h (273.3 vs. 125.8 pg/mL, p = 0.026) or later received renal replacement therapy (RRT) (299.7 vs. 146.3 pg/mL, p < 0.001). KIM-1 correlated with markers of renal function, inflammatory parameters, hematopoietic function, and cholangiocellular injury. Among subcomponents of the SOFA score, KIM-1 was elevated in patients with hyperbilirubinaemia (>2 mg/dL, p < 0.001) and thrombocytopenia (<150/nL, p = 0.018). In univariate and multivariate regression analyses, KIM-1 predicted sepsis, the need for RRT, and multi-organ dysfunction (MOD, SOFA > 12 and APACHE II ≥ 20) on the day of admission, adjusting for relevant comorbidities, bilirubin, and platelet count. Additionally, KIM-1 in multivariate regression was able to predict sepsis in patients without prior (CKD) or present (AKI) kidney injury. Our study suggests that next to its established role as a biomarker in kidney dysfunction, KIM-1 is associated with sepsis, biliary injury, and critical illness severity. It thus may offer aid for risk stratification in these patients.


Assuntos
Injúria Renal Aguda , Biomarcadores , Estado Terminal , Receptor Celular 1 do Vírus da Hepatite A , Sepse , Humanos , Receptor Celular 1 do Vírus da Hepatite A/sangue , Sepse/sangue , Sepse/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Biomarcadores/sangue , Índice de Gravidade de Doença , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Unidades de Terapia Intensiva , Adulto
8.
J Cell Biochem ; 125(6): e30579, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38747370

RESUMO

Lipid droplets are organelles with unique spherical structures. They consist of a hydrophobic neutral lipid core that varies depending on the cell type and tissue. These droplets are surrounded by phospholipid monolayers, along with heterogeneous proteins responsible for neutral lipid synthesis and metabolism. Additionally, there are specialized lipid droplet-associated surface proteins. Recent evidence suggests that proteins from the perilipin family (PLIN) are associated with the surface of lipid droplets and are involved in their formation. These proteins have specific roles in hepatic lipid droplet metabolism, such as protecting the lipid droplets from lipase action and maintaining a balance between lipid storage and utilization in specific cells. Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of lipid droplets in more than 5% of the hepatocytes. This accumulation can progress into metabolic dysfunction-associated steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The accumulation of hepatic lipid droplets in the liver is associated with the progression of MASLD and other diseases such as sarcopenic obesity. Therefore, it is crucial to understand the role of perilipins in this accumulation, as these proteins are key targets for developing novel therapeutic strategies. This comprehensive review aims to summarize the structure and characteristics of PLIN proteins, as well as their pathogenic role in the development of hepatic steatosis and fatty liver diseases.


Assuntos
Homeostase , Gotículas Lipídicas , Metabolismo dos Lipídeos , Perilipinas , Humanos , Gotículas Lipídicas/metabolismo , Perilipinas/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo
9.
Front Endocrinol (Lausanne) ; 15: 1365602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645429

RESUMO

The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its ß-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.


Assuntos
Lipocalina-2 , Humanos , Lipocalina-2/metabolismo , Lipocalina-2/genética , Animais , Feminino , Masculino , Reprodução/fisiologia , Genitália/metabolismo
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673873

RESUMO

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relação Estrutura-Atividade , Animais
12.
Cells ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38606998

RESUMO

Nasopharyngeal carcinoma (NPC) is a type of cancer that originates from the mucosal lining of the nasopharynx and can invade and spread. Although contemporary chemoradiotherapy effectively manages the disease locally, there are still challenges with locoregional recurrence and distant failure. Therefore, it is crucial to have a deeper understanding of the molecular basis of NPC cell movement in order to develop a more effective treatment and to improve patient survival rates. Cancer cell line models are invaluable in studying health and disease and it is not surprising that they play a critical role in NPC research. Consequently, scientists have established around 80 immortalized human NPC lines that are commonly used as in vitro models. However, over the years, it has been observed that many cell lines are misidentified or contaminated by other cells. This cross-contamination leads to the creation of false cell lines that no longer match the original donor. In this commentary, we discuss the impact of misidentified NPC cell lines on the scientific literature. We found 1159 articles from 2000 to 2023 that used NPC cell lines contaminated with HeLa cells. Alarmingly, the number of publications and citations using these contaminated cell lines continued to increase, even after information about the contamination was officially published. These articles were most commonly published in the fields of oncology, pharmacology, and experimental medicine research. These findings highlight the importance of science policy and support the need for journals to require authentication testing before publication.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Células HeLa , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Nasofaringe/metabolismo , Nasofaringe/patologia
13.
Bone Rep ; 21: 101759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590391

RESUMO

Patients with Crohn's disease are at increased risk for symptomatic nephrolithiasis. Stones in these patients are most commonly composed of calcium oxalate monohydrate or mixed calcium-oxalate and calcium-phosphate. Precipitation of both minerals depends on urinary pH, calcium, phosphate and oxalate excretion. The present manuscript reports on two patients with Crohn's disease and bowel resection, in whom the onset of symptomatic urolithiasis occurred after repeated infusions of ferric carboxymaltose - a drug, which is known to cause hyperphosphaturia. The present study shows that ferric carboxymaltose-induced hyperphosphaturia can be associated with kidney stone formation and symptomatic urolithiasis, especially in patients treated with calcitriol. Calcitriol has been shown to mitigate ferric carboxymaltose-induced secondary hyperparathyroidism and hyperphosphaturia, but is known to increase urinary calcium excretion. Chemical analysis of recovered stones revealed that they were mixed calcium oxalate and phosphate stones. Ring-like deposition of iron detected by spatially resolved elemental analysis using laser ablation-inductively coupled plasma mass spectrometry, showed that the stones also contained iron. Based on our findings, we propose that patients with inflammatory bowel disease requiring intravenous iron therapy should be carefully monitored for the development of hypophosphatemia and urolithiasis. If hypophosphatemia occurs in such patients, calcitriol should be used with caution.

14.
Mol Oncol ; 18(6): 1397-1416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429970

RESUMO

The effect of grainyhead-like transcription factor 3 (GRHL3) on cancer development depends on the cancer subtypes as shown in tumor entities such as colorectal or oral squamous cell carcinomas. Here, we analyzed the subtype-specific role of GRHL3 in bladder carcinogenesis, comparing common urothelial carcinoma (UC) with squamous bladder cancer (sq-BLCA). We examined GRHL3 mRNA and protein expression in cohorts of patient samples, its prognostic role and its functional impact on tumorigeneses in different molecular and histopathological subtypes of bladder cancer. We showed for GRHL3 a reverse expression in squamous and urothelial bladder cancer subtypes. Stably GRHL3-overexpressing EJ28, J82, and SCaBER in vitro models revealed a tumor-suppressive function in squamous and an oncogenic role in the urothelial cancer cells affecting cell and colony growth, and migratory and invasive capacities. Transcriptomic profiling demonstrated highly subtype-specific GRHL3-regulated expression networks coined by the enrichment of genes involved in integrin-mediated pathways. In SCaBER, loss of ras homolog family member A (RHOA) GTPase activity was demonstrated to be associated with co-regulation of eukaryotic translation initiation factor 4E family member 3 (EIF4E3), a potential tumor suppressor gene. Thus, our data provide for the first time a detailed insight into the role of the transcription factor GRHL3 in different histopathological subtypes of bladder cancer.


Assuntos
Carcinogênese , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Feminino , Masculino , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Movimento Celular/genética , Proliferação de Células/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Prognóstico , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Idoso
15.
Front Endocrinol (Lausanne) ; 15: 1325386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464972

RESUMO

Introduction: Estrogens are crucial regulators of ovarian function, mediating their signaling through binding to estrogen receptors. The disruption of the estrogen receptor 1 (Esr1) provokes infertility associated with a hemorrhagic, cystic phenotype similar to that seen in diseased or aged ovaries. Our previous study indicated the possibility of altered iron metabolism in Esr1-deficient ovaries showing massive expression of lipocalin 2, a regulator of iron homeostasis. Methods: Therefore, we examined the consequences of depleting Esr1 in mouse ovaries, focusing on iron metabolism. For that reason, we compared ovaries of adult Esr1-deficient animals and age-matched wild type littermates. Results and discussion: We found increased iron accumulation in Esr1-deficient animals by using laser ablation inductively coupled plasma mass spectrometry. Western blot analysis and RT-qPCR confirmed that iron overload alters iron transport, storage and regulation. In addition, trivalent iron deposits in form of hemosiderin were detected in Esr1-deficient ovarian stroma. The depletion of Esr1 was further associated with an aberrant immune cell landscape characterized by the appearance of macrophage-derived multinucleated giant cells (MNGCs) and increased quantities of macrophages, particularly M2-like macrophages. Similar to reproductively aged animals, MNGCs in Esr1-deficient ovaries were characterized by iron accumulation and strong autofluorescence. Finally, deletion of Esr1 led to a significant increase in ovarian mast cells, involved in iron-mediated foam cell formation. Given that these findings are characteristics of ovarian aging, our data suggest that Esr1 deficiency triggers mechanisms similar to those associated with aging.


Assuntos
Cistos , Sobrecarga de Ferro , Feminino , Camundongos , Animais , Ovário/metabolismo , Receptor alfa de Estrogênio/metabolismo , Camundongos Knockout , Sobrecarga de Ferro/genética , Ferro
16.
Cell Death Discov ; 10(1): 94, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388533

RESUMO

The molecular mechanisms underlying the transition from nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) are incompletely understood. During the development of NAFLD, Perilipin 5 (PLIN5) can regulate lipid metabolism by suppressing lipolysis and preventing lipotoxicity. Other reports suggest that the lack of PLIN5 decreases hepatic injury, indicating a protective role in NAFLD pathology. To better understand the role of PLIN5 in liver disease, we established mouse models of NAFLD and NAFLD-induced HCC, in which wild-type and Plin5 null mice were exposed to a single dose of acetone or 7,12-dimethylbenz[a]anthracene (DMBA) in acetone, followed by a 30-week high-fat diet supplemented with glucose/fructose. In the NAFLD model, RNA-seq revealed significant changes in genes related to lipid metabolism and immune response. At the intermediate level, pathways such as AMP-activated protein kinase (AMPK), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and protein kinase B (AKT) were blunted in Plin5-deficient mice (Plin5-/-) compared to wild-type mice (WT). In the NAFLD-HCC model, only WT mice developed liver tumors, while Plin5-/- mice were resistant to tumorigenesis. Furthermore, only 32 differentially expressed genes associated with NALFD progession were identified in Plin5 null mice. The markers of mitochondrial function and immune response, such as the peroxisome proliferator-activated receptor-γ, coactivator 1-α (PGC-1α) and phosphorylated STAT3, were decreased. Lipidomic analysis revealed differential levels of some sphingomyelins between WT and Plin5-/- mice. Interestingly, these changes were not detected in the HCC model, indicating a possible shift in the metabolism of sphingomelins during carcinogenesis.

17.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256181

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.


Assuntos
Fígado Gorduroso , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas de Membrana , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Metabolismo dos Lipídeos , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética
18.
Commun Biol ; 7(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168942

RESUMO

Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-ß (TGF-ß) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-ß signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-ß receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-ß or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-ß or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-ß signaling to Smad2/3 vs. pAkt (by TGF-ß or EGF) has potential implications for hepatic diseases and malignancies.


Assuntos
Hepatopatias , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Epidérmico , Hepatócitos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Hepatopatias/metabolismo , Colesterol/metabolismo
19.
Pharmacol Ther ; 253: 108563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013053

RESUMO

The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-ß, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/ß-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.


Assuntos
Hepatopatias , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Linfócitos T CD8-Positivos/patologia , Fígado , Hepatopatias/terapia , Cirrose Hepática/patologia , Anti-Inflamatórios
20.
Cell Mol Gastroenterol Hepatol ; 17(4): 567-587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38154598

RESUMO

BACKGROUND & AIMS: Transforming growth factor-ß1 (TGF-ß1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-ß1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS: Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-ß1. Functional assays were performed on AML12 cells (untreated, TGF-ß1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-ß1. RESULTS: TGF-ß1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-ß1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-ß1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-ß1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-ß1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-ß1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-ß1 administration, an effect that was blocked by an inhibitor of the type I TGF-ß receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS: TGF-ß1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-ß1 downstream effects in hepatocytes.


Assuntos
Fígado Gorduroso , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Hepatócitos/metabolismo , Células Estreladas do Fígado/patologia , Linhagem Celular , Fígado Gorduroso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA