Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767376

RESUMO

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Assuntos
Neoplasias Ósseas , Osso e Ossos , Transcriptoma , Humanos , Transcriptoma/genética , Osso e Ossos/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Perfilação da Expressão Gênica/métodos , Inclusão em Parafina/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
2.
J Transl Med ; 19(1): 450, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715874

RESUMO

Osteosarcoma (OS) is the most frequent primary bone cancer, affecting mostly children and adolescents. Although much progress has been made throughout the years towards treating primary OS, the 5-year survival rate for metastatic OS has remained at only 20% for the last 30 years. Therefore, more efficient treatments are needed. Recent studies have shown that tumor metabolism displays a unique behavior, and plays important roles in tumor growth and metastasis, making it an attractive potential target for novel therapies. While normal cells typically fuel the oxidative phosphorylation (OXPHOS) pathway with the products of glycolysis, cancer cells acquire a plastic metabolism, uncoupling these two pathways. This allows them to obtain building blocks for proliferation from glycolytic intermediates and ATP from OXPHOS. One way to target the metabolism of cancer cells is through dietary interventions. However, while some diets have shown anticancer effects against certain tumor types in preclinical studies, as of yet none have been tested to treat OS. Here we review the features of tumor metabolism, in general and about OS, and propose avenues of research in dietary intervention, discussing strategies that could potentially be effective to target OS metabolism.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos
3.
Oncotarget ; 9(53): 30163-30172, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046395

RESUMO

INTRODUCTION: The overall survival rate of patients with osteosarcoma (OS) and pulmonary metastases has remained stagnant at 15-30% for several decades. Disulfiram (DSF) is an FDA-approved aldehyde dehydrogenase inhibitor that reduces the metastatic phenotype of OS cells in vitro. Here we evaluate its in vivo efficacy, as compared to doxorubicin chemotherapy, in a previously-validated orthotopic model of metastatic OS. RESULTS: All treatment groups displayed a significantly reduced quantitative OS metastatic burden compared with controls. The metastatic burden of Lo DSF-treated animals was equivalent to the DXR group. Ninety-five percent of control animals displayed evidence of metastatic disease, which was significantly greater than all treatment groups. DISCUSSION: Disulfiram treatment resulted in a reduced burden of OS metastatic disease compared with controls. This was statistically-equivalent to doxorubicin. No additive effect was observed between these two therapies. MATERIALS AND METHODS: One-hundred twenty immunocompetent Balb/c mice received proximal tibia paraphyseal injections of 5 × 105 K7M2 murine OS cells. Therapy began three weeks after injection: saline (control), low-dose disulfiram (Lo DSF), high-dose disulfiram (Hi DSF), doxorubicin (DXR), Lo DSF + DXR, and Hi DSF + DXR. Transfemoral amputations were performed at 4 weeks. Quantitative metastatic tumor burden was measured using near-infrared indocyanine green (ICG) angiography.

4.
BMC Cancer ; 17(1): 78, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122543

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. METHODS: Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. RESULTS: Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. CONCLUSIONS: Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.


Assuntos
Fosfatase Alcalina/genética , Biomarcadores Tumorais/genética , Isoenzimas/genética , Osteossarcoma/genética , Retinal Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Técnicas de Cocultura , Dissulfiram/administração & dosagem , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Metástase Neoplásica , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA