Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 200-209, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177700

RESUMO

Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/enzimologia , Cristalografia por Raios X/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Modelos Moleculares , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/química , Sequência de Aminoácidos , Ligação Proteica , Cristalização
2.
Eur J Med Chem ; 276: 116642, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981336

RESUMO

KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site. The resulting X-ray structures of the novel compounds bound to KDM4D, a representative of the KDM4 family, revealed the interaction pattern with distal residues in the histone-binding site. The most prominent protein rearrangement detected upon ligand binding is the loop movement that blocks the accessibility to the histone binding site. Apart from providing new sites that potential inhibitors can target, the novel compounds may prove helpful in exploring the capacity of ligands to bind in sites distal to the cofactor-binding site of other KDMs or 2-oxoglutarate (2OG)-dependent oxygenases. The case study proves that combining a strong small binding motif with flexible tails to probe the binding pocket will facilitate lead discovery in classical drug-discovery campaigns, given the ease of accessing X-ray quality crystals.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Piridinas , Tetrazóis , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/química , Tetrazóis/química , Tetrazóis/farmacologia , Tetrazóis/metabolismo , Tetrazóis/síntese química , Piridinas/química , Piridinas/farmacologia , Piridinas/metabolismo , Piridinas/síntese química , Humanos , Sítios de Ligação , Cristalografia por Raios X , Relação Estrutura-Atividade , Histonas/metabolismo , Histonas/química , Estrutura Molecular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Modelos Moleculares , Relação Dose-Resposta a Droga
3.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
4.
Chemistry ; 29(23): e202203967, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36799129

RESUMO

The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.


Assuntos
Neoplasias Colorretais , Pirazóis , Humanos , Pirazóis/química , Pirimidinas/farmacologia , Pirimidinas/química , Linhagem Celular , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
5.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839840

RESUMO

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Assuntos
ADP-Ribosilação , Adenosina/análogos & derivados , Inibidores de Protease de Coronavírus , Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , ADP-Ribosilação/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Adenosina Difosfato Ribose/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Humanos , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
6.
J Med Chem ; 64(19): 14266-14282, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34555281

RESUMO

Jumonji domain-containing lysine demethylase (KDM) enzymes are encoded by genes of the KDM superfamily. Activities of the KDM4 subfamily promote aggressive phenotypes associated with prostate cancer (PCa). Previously, we discovered a benzimidazole pyrazole molecule that inhibited KDM4 isoforms with properties tractable for development. Here, we demonstrate that a benzyl-substituted variant of this inhibitor exhibits improved potency in biochemical assays, is cell-permeable, and kills PCa cells at low micromolar concentrations. By X-ray crystallography and kinetics-based assays, we demonstrate that the mechanism of inhibition is complex, proceeding via competition with the enzyme for binding of active-site Fe2+ and by populating a distal site on the enzyme surface. Furthermore, we provide evidence that the inhibitor's cytostatic properties arise from direct intracellular inhibition of KDM4 enzymes. PCa cells treated with the inhibitor exhibit reduced expression of genes regulated by the androgen receptor, an outcome accompanied by epigenetic maintenance of a heterochromatic state.


Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Benzimidazóis , Sítios de Ligação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazóis , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Purinergic Signal ; 17(4): 693-704, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34403084

RESUMO

Human ecto-5-nucleotidase (CD73) is involved in purinergic signalling, which influences a diverse range of biological processes. CD73 hydrolyses AMP and is the major control point for the levels of extracellular adenosine. Inhibitors of CD73 thus block the immunosuppressive action of adenosine, a promising approach for cancer immunotherapy. Interestingly, ADP and ATP are competitive inhibitors of CD73, with the most potent small-molecule inhibitors to date being non-hydrolysable ADP analogues. While AMP is the major substrate of the enzyme, CD73 has been reported to hydrolyse other 5'-nucleoside monophosphates. Based on a fragment screening campaign at the BESSY II synchrotron, we present the binding modes of various deoxyribo- and ribonucleoside monophosphates and of four additional fragments binding to the nucleoside binding site of the open form of the enzyme. Kinetic analysis of monophosphate hydrolysis shows that ribonucleotide substrates are favoured over their deoxyribose equivalents with AMP being the best substrate. We characterised the initial step of AMP hydrolysis, the binding mode of AMP to the open conformation of CD73 and compared that to other monophosphate substrates. In addition, the inhibitory activity of various bisphosphonic acid derivatives of nucleoside diphosphates was determined. Although AMPCP remains the most potent inhibitor, replacement of the adenine base with other purines or with pyrimidines increases the Ki value only between twofold and sixfold. On the other hand, these nucleobases offer new opportunities to attach substituents for improved pharmacological properties.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Purinas/metabolismo , Nucleotídeos de Pirimidina/metabolismo , Transdução de Sinais/fisiologia , Humanos , Hidrólise , Ligação Proteica , Dobramento de Proteína
8.
Biochimie ; 183: 3-12, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33045291

RESUMO

Prolidase is a metal-dependent peptidase specialized in the cleavage of dipeptides containing proline or hydroxyproline on their C-termini. Prolidase homologues are found in all kingdoms of life. The importance of prolidase in human health is underlined by a rare hereditary syndrome referred to as Prolidase Deficiency. A growing number of studies highlight the importance of prolidase in various other human conditions, including cancer. Some recent studies link prolidase's activity-independent regulatory role to tumorigenesis. Furthermore, the enzyme or engineered variants have some applications in biotechnology. In this short review, we aim to highlight different aspects of the protein the importance of which is increasingly recognized over the last years.


Assuntos
Carcinogênese , Dipeptidases , Proteínas de Neoplasias , Neoplasias , Deficiência de Prolidase , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Dipeptidases/genética , Dipeptidases/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Deficiência de Prolidase/enzimologia , Deficiência de Prolidase/genética
9.
Acta Crystallogr D Struct Biol ; 76(Pt 11): 1065-1079, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135678

RESUMO

This study focuses on the polymorphism of human insulin (HI) upon the binding of the phenolic derivatives p-coumaric acid or trans-resveratrol over a wide pH range. The determination of the structural behaviour of HI via X-ray powder diffraction (XRPD) and single-crystal X-ray diffraction (SCXRD) is reported. Four distinct polymorphs were identified, two of which have not been reported previously. The intermediate phase transitions are discussed. One of the novel monoclinic polymorphs displays the highest molecular packing among insulin polymorphs of the same space group to date; its structure was elucidated by SCXRD. XRPD data collection was performed using a variety of instrumental setups and a systematic comparison of the acquired data is presented. A laboratory diffractometer was used for screening prior to high-resolution XRPD data collection on the ID22 beamline at the European Synchrotron Radiation Facility. Additional measurements for the most representative samples were performed on the X04SA beamline at the Swiss Light Source (SLS) using the MYTHEN II detector, which allowed the detection of minor previously untraceable impurities and dramatically improved the d-spacing resolution even for poorly diffracting samples.


Assuntos
Ácidos Cumáricos , Insulina Regular Humana , Modelos Moleculares , Resveratrol , Ácidos Cumáricos/química , Cristalização , Humanos , Insulina Regular Humana/química , Substâncias Macromoleculares , Difração de Pó , Ligação Proteica , Resveratrol/química , Difração de Raios X
10.
IUCrJ ; 7(Pt 5): 825-834, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939274

RESUMO

Radiation-induced damage to protein crystals during X-ray diffraction data collection is a major impediment to obtaining accurate structural information on macromolecules. Some of the specific impairments that are inflicted upon highly brilliant X-ray irradiation are metal-ion reduction, disulfide-bond cleavage and a loss of the integrity of the carboxyl groups of acidic residues. With respect to disulfide-bond reduction, previous results have indicated that not all disulfide bridges are equally susceptible to damage. A careful analysis of the chemical environment of disulfide bonds in the structures of elastase, lysozyme, acetylcholinesterase and other proteins suggests that S-S bonds which engage in a close contact with a carbonyl O atom along the extension of the S-S bond vector are more susceptible to reduction than the others. Such an arrangement predisposes electron transfer to occur from the O atom to the disulfide bond, leading to its reduction. The interaction between a nucleophile and an electrophile, akin to hydrogen bonding, stabilizes protein structures, but it also provides a pathway of electron transfer to the S-S bond, leading to its reduction during exposure of the protein crystal to an intense X-ray beam. An otherwise stabilizing interaction can thus be the cause of destabilization under the condition of radiation exposure.

11.
Inorg Chem ; 59(1): 350-359, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820946

RESUMO

In situ formation of imine-based organic linkers facilitates the formation of metal-organic frameworks (MOFs), in particular if linker solubility hampers the direct synthesis. The reaction of ZrCl4 with 4-formylbenzoic acid or 4-formyl-3-hydroxybenzoic acid as the aldehyde source and 4-aminobenzoic acid as the amine source is shown to produce zirconium MOFs isoreticular to UiO-66 (PCN-161 and a novel DUT-133, [Zr6O4(OH)4(C15H9NO5)6], respectively). A similar reaction with p-phenylenediamine as the amine-containing building block gave 2-fold interpenetrated framework (PCN-164). Detailed characterization, including single crystal and powder X-ray diffraction, water stability tests, thermal stability, and in situ 1H and 13C NMR were performed to elucidate the formation mechanism of zirconium MOFs containing imine-based linkers. The resulting zirconium MOFs were evaluated as potential materials for CO2 capture and as ethylene oligomerization catalysts with anchored nickel as the active species.

12.
Chem Sci ; 11(35): 9468-9479, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094213

RESUMO

Framework materials at the molecular level, such as metal-organic frameworks (MOF), were recently found to exhibit exotic and counterintuitive micromechanical properties. Stimulated by host-guest interactions, these so-called soft porous crystals can display counterintuitive adsorption phenomena such as negative gas adsorption (NGA). NGA materials are bistable frameworks where the occurrence of a metastable overloaded state leads to pressure amplification upon a sudden framework contraction. How can we control activation barriers and energetics via functionalization of the molecular building blocks that dictate the frameworks' mechanical response? In this work we tune the elastic and inelastic properties of building blocks at the molecular level and analyze the mechanical response of the resulting frameworks. From a set of 11 frameworks, we demonstrate that widening of the backbone increases stiffness, while elongation of the building blocks results in a decrease in critical yield stress of buckling. We further functionalize the backbone by incorporation of sp3 hybridized carbon atoms to soften the molecular building blocks, or stiffen them with sp2 and sp carbons. Computational modeling shows how these modifications of the building blocks tune the activation barriers within the energy landscape of the guest-free bistable frameworks. Only frameworks with free energy barriers in the range of 800 to 1100 kJ mol-1 per unit cell, and moderate yield stress of 0.6 to 1.2 nN for single ligand buckling, exhibit adsorption-induced contraction and negative gas adsorption. Advanced experimental in situ methodologies give detailed insights into the structural transitions and the adsorption behavior. The new framework DUT-160 shows the highest magnitude of NGA ever observed for nitrogen adsorption at 77 K. Our computational and experimental analysis of the energetics and mechanical response functions of porous frameworks is an important step towards tuning activation barriers in dynamic framework materials and provides critical design principles for molecular building blocks leading to pressure amplifying materials.

13.
ChemMedChem ; 14(21): 1828-1839, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31475772

RESUMO

Human histone demethylases are known to play an important role in the development of several tumor types. Consequently, they have emerged as important medical targets for the treatment of human cancer. Herein, structural studies on tetrazolylhydrazide inhibitors as a new scaffold for a certain class of histone demethylases, the JmjC proteins, are reported. A series of compounds are structurally described and their respective binding modes to the KDM4D protein, which serves as a high-resolution model to represent the KDM4 subfamily in crystallographic studies, are examined. Similar to previously reported inhibitors, the compounds described herein are competitors for the natural KDM4 cofactor, 2-oxoglutarate. The tetrazolylhydrazide scaffold fills an important gap in KDM4 inhibition and newly described, detailed interactions of inhibitor moieties pave the way to the development of compounds with high target-binding affinity and increased membrane permeability, at the same time.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Tetrazóis/farmacologia , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligantes , Modelos Moleculares , Estrutura Molecular , Tetrazóis/síntese química , Tetrazóis/química
14.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1095-101, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945575

RESUMO

Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.


Assuntos
Cisteína/química , Proteínas de Fímbrias/química , Enxofre/química , Difração de Raios X/métodos , Cristalização , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica
15.
Biochem J ; 455(1): 119-30, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23909465

RESUMO

Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.


Assuntos
Proteínas de Transporte/química , Coenzima A/química , Cisteína/química , Leishmania mexicana/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Motivos de Aminoácidos , Biocatálise , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Coenzima A/metabolismo , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Leishmania mexicana/enzimologia , Leishmania mexicana/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
16.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 6): 671-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22683789

RESUMO

Aspartate-semialdehyde dehydrogenase (Asd; ASADH; EC 1.2.1.11) is the enzyme that lies at the first branch point in the biosynthetic pathway of important amino acids including lysine and methionine and the cell-wall component diaminopimelate (DAP). The enzymatic reaction of ASADH is the reductive dephosphorylation of aspartyl-ß-phosphate (ABP) to aspartate ß-semialdehyde (ASA). Since the aspartate pathway is absolutely essential for the survival of many microbes and is absent in humans, the enzymes involved in this pathway can be considered to be potential antibacterial drug targets. In this work, the structure of ASADH from Mycobacterium tuberculosis H37Rv (Mtb-ASADH) has been determined in complex with glycerol and sulfate at 2.18 Å resolution and in complex with S-methyl-L-cysteine sulfoxide (SMCS) and sulfate at 1.95 Å resolution. The overall structure of Mtb-ASADH is similar to those of its orthologues. However, in the Mtb-ASADH-glycerol complex structure the glycerol molecule is noncovalently bound to the active-site residue Cys130, while in the Mtb-ASADH-SMCS complex structure the SMCS (Cys) is covalently linked to Cys130. The Mtb-ASADH-SMCS complex structurally mimics one of the intermediate steps in the proposed mechanism of ASADH enzyme catalysis. Comparison of the two complex structures revealed that the amino acids Glu224 and Arg249 undergo conformational changes upon binding of glycerol. Moreover, the structures reported here may help in the development of species-specific antibacterial drug molecules against human pathogens.


Assuntos
Aspartato-Semialdeído Desidrogenase/química , Mycobacterium tuberculosis/enzimologia , Aspartato-Semialdeído Desidrogenase/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Sulfatos/química , Sulfatos/metabolismo
17.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 11): 936-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22101820

RESUMO

The microneme protein SML-2 is a member of a small family of galactose-specific lectins that play a role during host-cell invasion by the apicomplexan parasite Sarcocystis muris. The structures of apo SML-2 and the 1-thio-ß-D-galactose-SML-2 complex were determined at 1.95 and 2.1 Å resolution, respectively, by sulfur-SAD phasing. Highly elongated dimers are formed by PAN-domain tandems in the protomer, bearing the galactose-binding cavities at the distal apple-like domains. The detailed structure of the binding site in SML-2 explains the high specificity of galactose-endgroup binding and the broader specificity of the related Toxoplasma gondii protein TgMIC4 towards galactose and glucose. A large buried surface of highly hydrophobic character and 24 intersubunit hydrogen bonds stabilize the dimers and half of the 12 disulfides per dimer are shielded from the solvent by the polypeptide chain, thereby enhancing the resistance of the parasite protein towards unfolding and proteolysis that allows it to survive within the intestinal tracts of the intermediate and final hosts.


Assuntos
Extensões da Superfície Celular/metabolismo , Galactose/análogos & derivados , Proteínas de Protozoários/química , Sarcocystis/metabolismo , Sarcocistose/metabolismo , Animais , Cristalização , Galactose/química , Galactose/metabolismo , Especificidade de Hospedeiro , Humanos , Ligação de Hidrogênio , Lectinas/química , Lectinas/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas de Protozoários/metabolismo , Sarcocystis/patogenicidade , Sarcocistose/parasitologia , Toxoplasma/metabolismo , Virulência
18.
Exp Parasitol ; 129(4): 402-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864532

RESUMO

Leishmania infantum glyoxalase II shows absolute specificity towards its trypanothione thioester substrate. In the previous work, we performed a comparative analysis of glyoxalase II structures determined by X-ray crystallography which revealed that Tyr291 and Cys294, absent in the human homologue, are essential for substrate binding. To validate this trypanothione specificity hypothesis we produced a mutant L. infantum GLO2 enzyme by replacing Tyr291 and Cys294 by arginine and lysine, respectively. This new enzyme is capable to use the glutathione thioester substrate, with kinetic parameters similar to the ones from the human enzyme. Substrate specificity is likely to be mediated by spermidine moiety binding, providing a primer for understanding the molecular basis of trypanothione specificity.


Assuntos
Glutationa/análogos & derivados , Leishmania infantum/enzimologia , Leishmania infantum/genética , Espermidina/análogos & derivados , Tioléster Hidrolases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Regulação Enzimológica da Expressão Gênica , Glutationa/metabolismo , Espectrometria de Massas , Modelos Estruturais , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Espermidina/metabolismo , Especificidade por Substrato/genética , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
19.
FEBS J ; 277(12): 2628-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20553497

RESUMO

The gene yfdU from Escherichia coli encodes a putative oxalyl coenzyme A decarboxylase, a thiamine diphosphate-dependent enzyme that is potentially involved in the degradation of oxalate. The enzyme has been purified to homogeneity. The kinetic constants for conversion of the substrate oxalyl coenzyme A by the enzyme in the absence and presence of the inhibitor coenzyme A, as well as in the absence and presence of the activator adenosine 5'-diphosphate, were determined using a novel continuous optical assay. The effects of these ligands on the solution and crystal structure of the enzyme were studied using small-angle X-ray scattering and X-ray crystal diffraction. Analyses of the obtained crystal structures of the enzyme in complex with the cofactor thiamine diphosphate, the activator adenosine 5'-diphosphate and the inhibitor acetyl coenzyme A, as well as the corresponding solution scattering patterns, allow comparison of the oligomer structures of the enzyme complexes under various experimental conditions, and provide insights into the architecture of substrate and effector binding sites.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Difosfato de Adenosina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/enzimologia , Cinética , Dados de Sequência Molecular , Espalhamento a Baixo Ângulo , Tiamina Pirofosfato/química , Difração de Raios X
20.
J Biol Chem ; 284(18): 12136-44, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19246454

RESUMO

The mechanism by which the enzyme pyruvate decarboxylase from two yeast species is activated allosterically has been elucidated. A total of seven three-dimensional structures of the enzyme, of enzyme variants, or of enzyme complexes from two yeast species, three of them reported here for the first time, provide detailed atomic resolution snapshots along the activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a neighboring amino acid, which eventually leads to the rigidification of two otherwise flexible loops, one of which provides two histidine residues necessary to complete the enzymatically competent active site architecture. The structural data are complemented and supported by kinetic investigations and binding studies, providing a consistent picture of the structural changes occurring upon enzyme activation.


Assuntos
Proteínas Fúngicas/química , Kluyveromyces/enzimologia , Piruvato Descarboxilase/química , Ácido Pirúvico/química , Regulação Alostérica/fisiologia , Ativação Enzimática/fisiologia , Cinética , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA