RESUMO
Nonviral vectors for gene therapy such as lipoplexes are characterized by low toxicity, high biocompatibility, and good transfection efficiency. Specifically, lipoplexes based on polymeric surfactants and phospholipids have great potential as gene carriers due to the increased ability to bind genetic material (multiplied positive electric charge) while lowering undesirable effects (the presence of lipids makes the system more like natural membranes). This study aimed to test the ability to bind and release genetic material by lipoplexes based on trimeric surfactants and lipid formulations of different compositions and to characterize formed complexes by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). The cytotoxicity of studied lipoplexes was tested on HeLa cells by the MTT cell viability assay and the dye exclusion test (trypan blue). The presence of lipids in the system lowered the surfactant concentration required for complexation (higher efficiency) and reduced the cytotoxicity of lipoplexes. Surfactant/lipids/DNA complexes were more stable than surfactant/DNA complexes. Surfactant molecules induced the genetic material condensation, but the presence of lipids significantly intensified this process. Systems based on trimeric surfactants and lipid formulations, particularly TRI_N and TRI_IMI systems, could be used as delivery carrier, and have proven to be highly effective, nontoxic, and universal for DNA of various lengths.
Assuntos
Vetores Genéticos/genética , Fosfolipídeos/química , Tensoativos/química , Linhagem Celular Tumoral , Dicroísmo Circular/métodos , DNA/química , Técnicas de Transferência de Genes , Células HeLa , Humanos , Lipídeos/química , Microscopia de Força Atômica/métodosRESUMO
Among numerous compounds found in marine organisms, triterpenes have attracted considerable research interest due to a beneficial impact on health including anti-inflammatory, antitumor, antiviral, and antioxidation effects. Specifically, new functionalities of oleanolic acid (OLA) have been revealed recently, indicating possible applications in nutrition and pharmaceuticals. However, this bioactive material has limited value due to low water solubility and stability. Therefore, oleanolic acid needs a carrier that protects it and enables controlled release in the human body. Innovative drug delivery systems provide a promising strategy for overcoming these problems. However, the development of those systems requires a comprehensive understanding of the physicochemical properties of triterpenes and their carriers as well as the interactions between them. Among numerous substances, human serum albumin (HSA) has been widely studied as a drug carrier. In addition, human serum albumin is the main blood plasma protein responsible for the transport of drugs and metabolites; therefore, the interactions between that protein and other substances are of physiological and pharmaceutical importance. Moreover, sensing the HSA level in blood plasma is an important challenge that requires binding studies on a molecular scale. The aim of this study was to investigate the properties of oleanolic acid in the presence of human serum albumin in terms of thermodynamics, morphology, and viscoelasticity at the air/water interface. Moreover, the wettability, surface free energy, and topography of the films after deposition on the solid substrate were determined. The results have been discussed in terms of providing physicochemical insight into the interfacial behavior of the OLA-HSA complex, which is crucial for pharmaceutical and bioanalytical applications.
Assuntos
Ácido Oleanólico , Albumina Sérica Humana , Triterpenos , Humanos , Ácido Oleanólico/química , Ligação Proteica , Albumina Sérica Humana/metabolismo , Solubilidade , TermodinâmicaRESUMO
Background: Mutations in genes encoding intercalated disk/desmosome proteins, such as plakophilin 2 (PKP2), cause arrhythmogenic cardiomyopathy (ACM). Desmosomes are responsible for myocyte-myocyte attachment and maintaining mechanical integrity of the myocardium. Methods: We knocked down Pkp2 in HL-1 mouse atrial cardiomyocytes (HL-1Pkp2-shRNA) and characterized their biomechanical properties. Gene expression was analyzed by RNA-Sequencing, microarray, and qPCR. Immunofluorescence was used to detect changes in cytoskeleton and focal adhesion. Antagomirs were used to knock down expression of selected microRNA (miR) in the rescue experiments. Results: Knockdown of Pkp2 was associated with decreased cardiomyocyte stiffness and work of detachment, and increased plasticity index. Altered mechanical properties were associated with impaired actin cytoskeleton in HL-1Pkp2-shRNA cells. Analysis of differentially expressed genes identified focal adhesion and actin cytoskeleton amongst the most dysregulated pathways, and miR200 family (a, b, and 429) as the most upregulated miRs in HL-1Pkp2-shRNA cells. Knockdown of miR-200b but not miR-200a, miR-429, by sequence-specific shRNAs partially rescued integrin-α1 (Itga1) levels, actin organization, cell adhesion (on collagen), and stiffness. Conclusions: PKP2 deficiency alters cardiomyocytes adhesion through a mechanism that involves upregulation of miR-200b and suppression of Itga1 expression. These findings provide new insights into the molecular basis of altered mechanosensing in ACM.
Assuntos
MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Placofilinas/genética , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular , Plasticidade Celular , Citoesqueleto/metabolismo , Desmossomos/metabolismo , Camundongos , Miocárdio/metabolismo , Placofilinas/metabolismoRESUMO
Recently, we reported on the interfacial behavior of mixed oleic acid (OA)-α-lactalbumin monolayer and its relevance in the formation of tumoricidal HAMLET (human α-lactalbumin made lethal to tumor cells)-like complex. This complex is probably formed in the gastrointestinal tract, but it has not been proved so far. The molecular base and the underlying physicochemical forces leading to such complexation remain to be known as well. There are also several other issues related with the complex stoichiometry that need to be fully explained. This study provides insight into the mechanism of temperature, pH, and physical state of monolayer-dependent binding of OA by the milk protein- apo-α-lactalbumin. Using the Langmuir and Langmuir-Blodgett approaches, we investigated the interactions between the OA monolayer and the apo-bovine α-lactalbumin (BLA III) at different pH, temperatures, and molecular packing. We found that the most favorable conditions for the formation of mixed OA-BLA III film are relevant to the gastric environment. The stabilization of OA-BLA III at the interface is associated with the conformational changes of protein in the presence of fatty acids induced by low pH and high temperature in the expanded monolayer. Our approach helps to understand the molecular mechanism of HAMLET/bovine α-lactalbumin made lethal to tumor cells formation in vivo.
Assuntos
Lactalbumina/química , Ácido Oleico/química , Temperatura , Silicatos de Alumínio/química , Concentração de Íons de Hidrogênio , Lactalbumina/metabolismo , Modelos Moleculares , Conformação Molecular , Transporte ProteicoRESUMO
BACKGROUND: Silk is a biocompatible and biodegradable material, able to self-assemble into different morphological structures. Silk structures may be used for many biomedical applications, including carriers for drug delivery. The authors designed a new bioengineered spider silk protein, EMS2, and examined its property as a carrier of chemotherapeutics. MATERIALS AND METHODS: To obtain EMS protein, the MS2 silk monomer (that was based on the MaSp2 spidroin of Nephila clavipes) was modified by the addition of a glutamic acid residue. Both bioengineered silks were produced in an Escherichia coli expression system and purified by thermal method. The silk spheres were produced by mixing with potassium phosphate buffer. The physical properties of the particles were characterized using scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and zeta potential measurements. The MTT assay was used to examine the cytotoxicity of spheres. The loading and release profiles of drugs were studied spectrophotometrically. RESULTS: The bioengineered silk variant, EMS2, was constructed, produced, and purified. The EMS2 silk retained the self-assembly property and formed spheres. The spheres made of EMS2 and MS2 silks were not cytotoxic and had a similar secondary structure content but differed in morphology and zeta potential values; EMS2 particles were more negatively charged than MS2 particles. Independently of the loading method (pre- or post-loading), the loading of drugs into EMS2 spheres was more efficient than the loading into MS2 spheres. The advantageous loading efficiency and release rate made EMS2 spheres a good choice to deliver neutral etoposide (ETP). Despite the high loading efficiency of positively charged mitoxantrone (MTX) into EMS2 particles, the fast release rate made EMS2 unsuitable for the delivery of this drug. A faster release rate from EMS2 particles compared to MS2 particles was observed for positively charged doxorubicin (DOX). CONCLUSION: By modifying its sequence, silk affinity for drugs can be controlled.