Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775859

RESUMO

PURPOSE: The genetic intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN: To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directsMSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. RESULTS: This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-seq OS dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS: Our study quantifies OS differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.

2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090606

RESUMO

Cancer transcriptional patterns exhibit both shared and unique features across diverse cancer types, but whether these patterns are sufficient to characterize the full breadth of tumor phenotype heterogeneity remains an open question. We hypothesized that cancer transcriptional diversity mirrors patterns in normal tissues optimized for distinct functional tasks. Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal tissue patterns and variations across a broad spectrum of malignancies. We show that differential enrichment of these signatures correlates with key tumor characteristics, including overall patient survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we show that in HR+/HER2-breast cancers, metastatic tumors adopt transcriptomic signatures consistent with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue transcriptomic characteristics as a component of both malignant progression and drug response. This quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and could potentially help manage individual patients.

3.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745374

RESUMO

The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.

4.
BMC Bioinformatics ; 23(1): 449, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309638

RESUMO

BACKGROUND: Compositional systems, represented as parts of some whole, are ubiquitous. They encompass the abundances of proteins in a cell, the distribution of organisms in nature, and the stoichiometry of the most basic chemical reactions. Thus, a central goal is to understand how such processes emerge from the behaviors of their components and their pairwise interactions. Such a study, however, is challenging for two key reasons. Firstly, such systems are complex and depend, often stochastically, on their constituent parts. Secondly, the data lie on a simplex which influences their correlations. RESULTS: To resolve both of these issues, we provide a general and data-driven modeling tool for compositional systems called Compositional Maximum Entropy (CME). By integrating the prior geometric structure of compositions with sample-specific information, CME infers the underlying multivariate relationships between the constituent components. We provide two proofs of principle. First, we measure the relative abundances of different bacteria and infer how they interact. Second, we show that our method outperforms a common alternative for the extraction of gene-gene interactions in triple-negative breast cancer. CONCLUSIONS: CME provides novel and biologically-intuitive insights and is promising as a comprehensive quantitative framework for compositional data.


Assuntos
Bactérias , Proteínas , Entropia , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA