Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202309362, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37640689

RESUMO

Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.


Assuntos
Histidina , Ferro , Histidina/metabolismo , Ligantes , Catálise , Estresse Oxidativo
2.
Proc Natl Acad Sci U S A ; 119(41): e2200689119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191229

RESUMO

Evidence of how gestational parameters evolved is essential to understanding this fundamental stage of human life. Until now, these data seemed elusive given the skeletal bias of the fossil record. We demonstrate that dentition provides a window into the life of neonates. Teeth begin to form in utero and are intimately associated with gestational development. We measured the molar dentition for 608 catarrhine primates and collected data on prenatal growth rate (PGR) and endocranial volume (ECV) for 19 primate genera from the literature. We found that PGR and ECV are highly correlated (R2 = 0.93, P < 0.001). Additionally, we demonstrated that molar proportions are significantly correlated with PGR (P = 0.004) and log-transformed ECV (P = 0.001). From these correlations, we developed two methods for reconstructing PGR in the fossil record, one using ECV and one using molar proportions. Dental proportions reconstruct hominid ECV (R2 = 0.81, P < 0.001), a result that can be extrapolated to PGR. As teeth dominate fossil assemblages, our findings greatly expand our ability to investigate life history in the fossil record. Fossil ECVs and dental measurements from 13 hominid species both support significantly increasing PGR throughout the terminal Miocene and Plio-Pleistocene, reflecting known evolutionary changes. Together with pelvic and endocranial morphology, reconstructed PGRs indicate the need for increasing maternal energetics during pregnancy over the last 6 million years, reaching a human-like PGR (i.e., more similar to humans than to other extant apes) and ECV in later Homo less than 1 million years ago.


Assuntos
Evolução Biológica , Hominidae , Animais , Feminino , Fósseis , Hominidae/anatomia & histologia , Humanos , Recém-Nascido , Dente Molar , Gravidez
3.
Chem Sci ; 13(12): 3589-3598, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35432880

RESUMO

Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities.

4.
ACS Catal ; 12(23): 14559-14570, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37168530

RESUMO

Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.

5.
Mol Ecol ; 30(19): 4630-4641, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273213

RESUMO

Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome-wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species-raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa, (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.


Assuntos
Arabidopsis , Arabidopsis/genética , Recombinação Homóloga/genética , Meiose/genética , Estações do Ano , Temperatura
7.
Front Neurosci ; 15: 780841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082594

RESUMO

Purpose: To investigate how modulating ocular sympathetic activity affects progression of choroidal neovascularization (CNV), a hallmark feature of wet age-related macular degeneration (AMD). Methods: In the first of two studies, Brown Norway rats underwent laser-induced CNV and were assigned to one of the following groups: daily eye drops of artificial tears (n = 10; control group); daily eye drops of the ß-adrenoreceptor agonist isoproterenol (n = 10); daily eye drops of the ß-adrenoreceptor antagonist propranolol (n = 10); sympathetic internal carotid nerve (ICN) transection 6 weeks prior to laser-induced CNV (n = 10). In the second study, rats underwent laser-induced CNV followed by ICN transection at different time points: immediately after the laser injury (n = 6), 7 days after the laser injury (n = 6), and sham surgery 7 days after the laser injury (n = 6; control group). All animals were euthanized 14 days after laser application. CNV development was quantified with fluorescein angiography and optical coherence tomography (in vivo), as well as lesion volume analysis using 3D confocal reconstruction (postmortem). Angiogenic growth factor protein levels in the choroid were measured with ELISA. Results: In the first study, blocking ocular sympathetic activity through pharmacological or surgical manipulation led to a 75% or 70% reduction in CNV lesion volume versus the control group, respectively (P < 0.001). Stimulating ocular sympathetic activity with isoproterenol also led to a reduction in lesion volume, but only by 27% versus controls (P < 0.05). VEGF protein levels in the choroid were elevated in the three treatment groups (P < 0.01). In the second study, fluorescein angiography and CNV lesion volume analysis indicated that surgically removing the ocular sympathetic supply inhibited progression of laser-induced CNV, regardless of whether ICN transection was performed on the same day or 7 days after the laser injury. Conclusion: Surgical and pharmacological block of ocular sympathetic activity can inhibit progression of CNV in a rat model. Therefore, electrical block of ICN activity could be a potential bioelectronic medicine strategy for treating wet AMD.

8.
Front Cell Dev Biol ; 8: 504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656213

RESUMO

Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.

9.
Biochemistry ; 58(51): 5135-5150, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31750652

RESUMO

Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Regardless of the phylogenic domain, the active site for this enzyme class is typically comprised of two major features: (1) a mononuclear ferrous iron coordinated by three protein-derived histidines and (2) a conserved sequence of outer Fe-coordination-sphere amino acids (Ser-His-Tyr) spatially adjacent to the iron site (∼3 Å). Here, we utilize a promiscuous 3-mercaptopropionic acid dioxygenase cloned from Azotobacter vinelandii (Av MDO) to explore the function of the conserved S-H-Y motif. This enzyme exhibits activity with 3-mercaptopropionic acid (3mpa), l-cysteine (cys), as well as several other thiol-bearing substrates, thus making it an ideal system to study the influence of residues within the highly conserved S-H-Y motif (H157 and Y159) on substrate specificity and reactivity. The pKa values for these residues were determined by pH-dependent steady-state kinetics, and their assignments verified by comparison to H157N and Y159F variants. Complementary electron paramagnetic resonance and Mössbauer studies demonstrate a network of hydrogen bonds connecting H157-Y159 and Fe-bound ligands within the enzymatic Fe site. Crucially, these experiments suggest that the hydroxyl group of Y159 hydrogen bonds to Fe-bound NO and, by extension, Fe-bound oxygen during native catalysis. This interaction alters both the NO binding affinity and rhombicity of the 3mpa-bound iron-nitrosyl site. In addition, Fe coordination of cys is switched from thiolate only to bidentate (thiolate/amine) for the Y159F variant, indicating that perturbations within the S-H-Y proton relay network also influence cys Fe binding denticity.


Assuntos
Ácido 3-Mercaptopropiônico/metabolismo , Domínio Catalítico , Dioxigenases/química , Dioxigenases/metabolismo , Ferro , Tirosina , Motivos de Aminoácidos , Azotobacter/enzimologia , Dioxigenases/genética , Modelos Moleculares , Mutação
10.
Invest Ophthalmol Vis Sci ; 60(13): 4303-4309, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618767

RESUMO

Purpose: To investigate specific effects of denervation and stimulation of the internal carotid nerve (ICN) on the choroid and retina. Methods: Female Sprague Dawley rats underwent unilateral ICN transection (n = 20) or acute ICN electrical stimulation (n = 7). Rats in the denervation group were euthanized 6 weeks after nerve transection, and eyes were analyzed for changes in choroidal vascularity (via histomorphometry) or angiogenic growth factors and inflammatory markers (via ELISA). Rats in the stimulation group received acute ICN electrical stimulation with a bipolar cuff electrode over a range of stimulus amplitudes, frequencies, and pulse widths. Choroidal blood flow and pupil diameter were monitored before, during, and after stimulation. Results: Six weeks after unilateral ICN transection, sympathectomized choroids exhibited increased vascularity, defined as the percentage of choroidal surface area occupied by blood vessel lumina. Vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein levels in denervated choroids were 61% and 124% higher than in contralateral choroids, respectively. TNF-α levels in denervated retinas increased by 3.3-fold relative to levels in contralateral retinas. In animals undergoing acute ICN electrical stimulation, mydriasis and reduced choroidal blood flow were observed in the ipsilateral eye. The magnitude of the reduction in blood flow correlated positively with stimulus frequency. Conclusions: Modulation of ICN activity reveals a potential role of the ocular sympathetic system in regulating endpoints related to neovascular diseases of the eye.


Assuntos
Artéria Carótida Interna/inervação , Corioide/irrigação sanguínea , Simpatectomia , Sistema Nervoso Simpático/cirurgia , Animais , Biomarcadores/metabolismo , Corioide/metabolismo , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Feminino , Pupila/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Gânglio Cervical Superior/fisiologia , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Angew Chem Int Ed Engl ; 57(49): 16010-16014, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353620

RESUMO

Hydrogen bonds (H-bonds) have been shown to modulate the chemical reactivities of iron centers in iron-containing dioxygen-activating enzymes and model complexes. However, few examples are available that investigate how systematic changes in intramolecular H-bonds within the secondary coordination sphere influence specific properties of iron intermediates, such as iron-oxido/hydroxido species. Here, we used 57 Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the Fe-O/OH vibrations in a series of FeIII -hydroxido and FeIV/III -oxido complexes with varying H-bonding networks but having similar trigonal bipyramidal primary coordination spheres. The data show that even subtle changes in the H-bonds to the Fe-O/OH units result in significant changes in their vibrational frequencies, thus demonstrating the utility of NRVS in studying the effect of the secondary coordination sphere to the reactivities of iron complexes.


Assuntos
Hidróxidos/química , Compostos de Ferro/química , Óxidos/química , Ligação de Hidrogênio , Isótopos de Ferro , Espectroscopia de Ressonância Magnética , Conformação Molecular , Vibração
12.
Ophthalmic Surg Lasers Imaging Retina ; 49(9): e65-e74, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222821

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate a stereological method in optical coherence tomography (OCT) as an in vivo volume measurement of laser-induced choroidal neovascularization (L-CNV) lesion size. PATIENTS AND METHODS: Laser photocoagulation was applied in rats to rupture Bruch's membrane and induce L-CNV. In vivo OCT images of neovascular lesions were acquired with a spectral-domain OCT system at days 0, 3, 7, 10, and 14 after laser surgery. A stereological image-processing method was used to calculate lesion volumes from the OCT images. Rats were euthanized at day 14, and confocal microscopy was used to obtain accurate volume measurements of the lesions ex vivo. Lesion sizes calculated from OCT and confocal were compared. RESULTS: In vivo assessment by OCT allowed three distinct stages of L-CNV to be visualized: the initial early reaction, neovascular proliferation, and regression. At day 14, correlations between OCT and confocal lesion volumes showed a positive association (Pearson's r = 0.50, P < .01). Except for the largest lesions, volumes measured by OCT were statistically similar to those measured by the confocal gold standard (P = .90). CONCLUSION: The stereological approach used to measure neovascular lesion volume from OCT images offers an accurate means to track L-CNV lesion size in vivo. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:e65-e74.].


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Terapia com Luz de Baixa Intensidade/efeitos adversos , Tomografia de Coerência Óptica/métodos , Animais , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , Angiofluoresceinografia/métodos , Fundo de Olho , Degeneração Macular/diagnóstico , Degeneração Macular/cirurgia , Masculino , Ratos , Ratos Endogâmicos BN
13.
Ann Biomed Eng ; 46(1): 48-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086222

RESUMO

In recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca2+ signaling through mechanotransduction pathways. Because Ca2+ regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca2+ signaling could lead to new applications for ultrasound. In this study, we investigated the mechanism of ultrasound-induced Ca2+ mobilization in human mesenchymal stem cells using 47 MHz focused ultrasound to stimulate single cells at low intensities (~ 110 mW/cm2). We found that ultrasound exposure triggers opening of connexin 43 hemichannels on the plasma membrane, causing release of ATP into the extracellular space. That ATP then binds to G-protein-coupled P2Y1 purinergic receptors on the membrane, in turn activating phospholipase C, which evokes production of inositol trisphosphate and release of Ca2+ from intracellular stores.


Assuntos
Cálcio/metabolismo , Conexina 43/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Ondas Ultrassônicas , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo
14.
Front Oncol ; 7: 161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824873

RESUMO

Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145) and bladder (T24/83) cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84). In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.

15.
Biochemistry ; 56(22): 2836-2852, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28493664

RESUMO

Carotenoid cleavage oxygenases (CCOs) are non-heme iron enzymes that catalyze scission of alkene groups in carotenoids and stilbenoids to form biologically important products. CCOs possess a rare four-His iron center whose resting-state structure and interaction with substrates are incompletely understood. Here, we address this knowledge gap through a comprehensive structural and spectroscopic study of three phyletically diverse CCOs. The crystal structure of a fungal stilbenoid-cleaving CCO, CAO1, reveals strong similarity between its iron center and those of carotenoid-cleaving CCOs, but with a markedly different substrate-binding cleft. These enzymes all possess a five-coordinate high-spin Fe(II) center with resting-state Fe-His bond lengths of ∼2.15 Å. This ligand set generates an iron environment more electropositive than those of other non-heme iron dioxygenases as observed by Mössbauer isomer shifts. Dioxygen (O2) does not coordinate iron in the absence of substrate. Substrates bind away (∼4.7 Å) from the iron and have little impact on its electronic structure, thus excluding coordination-triggered O2 binding. However, substrate binding does perturb the spectral properties of CCO Fe-NO derivatives, indicating proximate organic substrate and O2-binding sites, which might influence Fe-O2 interactions. Together, these data provide a robust description of the CCO iron center and its interactions with substrates and substrate mimetics that illuminates commonalities as well as subtle and profound structural differences within the CCO family.


Assuntos
Alcenos/química , Dioxigenases/química , Heme/química , Conformação Proteica
16.
J Am Chem Soc ; 138(42): 13866-13869, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27723320

RESUMO

The unique properties of entirely aliphatic TAML activator [FeIII{(Me2CNCOCMe2NCO)2CMe2}OH2]- (3), namely the increased steric bulk of the ligand and the unmatched resistance to the acid-induced demetalation, enables the generation of high-valent iron derivatives in pure water at any pH. An iron(V)oxo species is readily produced with NaClO at pH values from 2 to 10.6 without any observable intermediate. This is the first reported example of iron(V)oxo formed in pure water. At pH 13, iron(V)oxo is not formed and NaClO oxidizes 3 to an iron(IV)oxo derivative.

17.
J Am Chem Soc ; 138(29): 9073-6, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27385206

RESUMO

Cupredoxins are electron-transfer proteins that have active sites containing a mononuclear Cu center with an unusual trigonal monopyramidal structure (Type 1 Cu). A single Cu-Scys bond is present within the trigonal plane that is responsible for its unique physical properties. We demonstrate that a cysteine-containing variant of streptavidin (Sav) can serve as a protein host to model the structure and properties of Type 1 Cu sites. A series of artificial Cu proteins are described that rely on Sav and a series of biotinylated synthetic Cu complexes. Optical and EPR measurements highlight the presence of a Cu-Scys bond, and XRD analysis provides structural evidence. We further provide evidence that changes in the linker between the biotin and Cu complex within the synthetic constructs allows for small changes in the placement of Cu centers within Sav that have dramatic effects on the structural and physical properties of the resulting artificial metalloproteins. These findings highlight the utility of the biotin-Sav technology as an approach for simulating active sites of metalloproteins.


Assuntos
Azurina/química , Azurina/metabolismo , Biotinilação , Domínio Catalítico , Cobre/química , Cisteína , Ligantes , Estreptavidina/química , Estreptavidina/metabolismo
18.
Stem Cells Int ; 2016: 8612751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293449

RESUMO

Understanding how stem cell-derived neurons functionally integrate into the brain upon transplantation has been a long sought-after goal of regenerative medicine. However, methodological limitations have stood as a barrier, preventing key insight into this fundamental problem. A recently developed technology, termed optogenetic functional magnetic resonance imaging (ofMRI), offers a possible solution. By combining targeted activation of transplanted neurons with large-scale, noninvasive measurements of brain activity, ofMRI can directly visualize the effect of engrafted neurons firing on downstream regions. Importantly, this tool can be used to identify not only whether transplanted neurons have functionally integrated into the brain, but also which regions they influence and how. Furthermore, the precise control afforded over activation enables the input-output properties of engrafted neurons to be systematically studied. This review summarizes the efforts in stem cell biology and neuroimaging that made this development possible and outlines its potential applications for improving and optimizing stem cell-based therapies in the future.

19.
Nature ; 527(7579): 539-543, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26524521

RESUMO

Many peroxy-containing secondary metabolites have been isolated and shown to provide beneficial effects to human health. Yet, the mechanisms of most endoperoxide biosyntheses are not well understood. Although endoperoxides have been suggested as key reaction intermediates in several cases, the only well-characterized endoperoxide biosynthetic enzyme is prostaglandin H synthase, a haem-containing enzyme. Fumitremorgin B endoperoxidase (FtmOx1) from Aspergillus fumigatus is the first reported α-ketoglutarate-dependent mononuclear non-haem iron enzyme that can catalyse an endoperoxide formation reaction. To elucidate the mechanistic details for this unique chemical transformation, we report the X-ray crystal structures of FtmOx1 and the binary complexes it forms with either the co-substrate (α-ketoglutarate) or the substrate (fumitremorgin B). Uniquely, after α-ketoglutarate has bound to the mononuclear iron centre in a bidentate fashion, the remaining open site for oxygen binding and activation is shielded from the substrate or the solvent by a tyrosine residue (Y224). Upon replacing Y224 with alanine or phenylalanine, the FtmOx1 catalysis diverts from endoperoxide formation to the more commonly observed hydroxylation. Subsequent characterizations by a combination of stopped-flow optical absorption spectroscopy and freeze-quench electron paramagnetic resonance spectroscopy support the presence of transient radical species in FtmOx1 catalysis. Our results help to unravel the novel mechanism for this endoperoxide formation reaction.


Assuntos
Aspergillus fumigatus/enzimologia , Biocatálise , Ácidos Cetoglutáricos/metabolismo , Endoperóxidos de Prostaglandina/biossíntese , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Heme , Hidroxilação , Indóis/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Tirosina/metabolismo
20.
Sci Rep ; 5: 11207, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26053433

RESUMO

RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30-200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Invasividade Neoplásica/genética , Proteínas/genética , RNA não Traduzido/genética , Proteínas Repressoras/genética , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA