Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
PLoS Genet ; 19(8): e1010904, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639465

RESUMO

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.


Assuntos
Ritmo Circadiano , Neoplasias , Proteínas Proto-Oncogênicas c-myc , Humanos , Aminoácidos/metabolismo , Linhagem Celular , Membrana Celular , Metabolômica , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Cell Metab ; 35(3): 517-534.e8, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36804058

RESUMO

The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Glioblastoma/terapia , Glioblastoma/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Linfócitos T/metabolismo , Microambiente Tumoral
4.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36711638

RESUMO

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

5.
Nat Commun ; 13(1): 6623, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333297

RESUMO

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Assuntos
Apresentação Cruzada , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Células Dendríticas , Neoplasias Pulmonares/metabolismo , Lisossomos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
6.
Cell Metab ; 34(9): 1342-1358.e7, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070682

RESUMO

Effector trogocytosis between malignant cells and tumor-specific cytotoxic T lymphocytes (CTLs) contributes to immune evasion through antigen loss on target cells and fratricide of antigen-experienced CTLs by other CTLs. The mechanisms regulating these events in tumors remain poorly understood. Here, we demonstrate that tumor-derived factors (TDFs) stimulated effector trogocytosis and restricted CTLs' tumoricidal activity and viability in vitro. TDFs robustly altered the CTL's lipid profile, including depletion of 25-hydroxycholesterol (25HC). 25HC inhibited trogocytosis and prevented CTL's inactivation and fratricide. Mechanistically, TDFs induced ATF3 transcription factor that suppressed the expression of 25HC-regulating gene-cholesterol 25-hydroxylase (CH25H). Stimulation of trogocytosis in the intratumoral CTL by the ATF3-CH25H axis attenuated anti-tumor immunity, stimulated tumor growth, and impeded the efficacy of chimeric antigen receptor (CAR) T cell adoptive therapy. Through use of armored CAR constructs or pharmacologic agents restoring CH25H expression, we reversed these phenotypes and increased the efficacy of immunotherapies.


Assuntos
Linfócitos T Citotóxicos , Trogocitose , Imunoterapia , Esteroide Hidroxilases , Replicação Viral/genética
7.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654839

RESUMO

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Assuntos
Fibroblastos Associados a Câncer , Melanoma , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/patologia
8.
Sleep Med ; 80: 1-8, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33530007

RESUMO

BACKGROUND: Insomnia is a highly prevalent condition that is associated with negative health outcomes, yet little is known about the underlying molecular mechanisms. METHOD: RNA sequencing was conducted using blood samples from 15 individuals with primary insomnia and 15 age- and gender-matched good sleeper controls. The RNA library was sequenced with 150 base pair paired-ends on the Illumina NovaSeq-6000 platform. Alignment was performed using human reference genome hg38. Differential gene expression analysis was performed using DESeq2 following alignment, using log fold change ±0.50, and had a false discovery rate p-value <0.05. Pathway analysis was performed using Ingenuity Pathway Analysis. RESULTS: We found 288 differentially expressed genes in insomnia patients when compared to controls. Upregulated genes included LINC02224 (Long Intergenic Non-Protein Coding RNA 2224), DUX4L9 (Double Homeobox 4 Like 9), and TUSC3 (Tumor Suppressor Candidate 3) and down regulated genes included CTXN2 (Cortexin 2), CSMD1 (CUB And Sushi Multiple Domains 1), and SLC12A1 (Solute Carrier Family 12 Member 1). Ingenuity® Pathway Analysis (IPA) revealed 3 associated networks (score>40) with genes and hubs related to inflammation (nuclear factor-kB), oxidative stress (Mitochondrial complex 1) and ubiquitination. CONCLUSION: Differentially expressed genes in this analysis are functionally associated with inflammation and immune response, mitochondrial and metabolic processes. Further research into the transcriptomic changes in insomnia is needed to understand related pathways to the disorder and provide new avenues for diagnostics and therapeutics.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Perfilação da Expressão Gênica , Humanos , Projetos Piloto , Análise de Sequência de RNA , Distúrbios do Início e da Manutenção do Sono/genética , Transcriptoma/genética
9.
FEBS J ; 288(2): 614-639, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383312

RESUMO

Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine ß-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn  mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Cistationina beta-Sintase/genética , Metaboloma/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/deficiência , Cistationina beta-Sintase/metabolismo , Elementos E-Box , Feminino , Células HEK293 , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
10.
Cancers (Basel) ; 12(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708705

RESUMO

The metabolic requirements of metastatic non-small cell lung (mNSCLC) tumors from patients receiving first-line platinum-doublet chemotherapy are hypothesized to imprint a blood signature suitable for survival prediction. Pre-treatment samples prospectively collected at baseline from a randomized phase III trial were assayed using nuclear magnetic resonance (NMR) spectroscopy (n = 341) and ultra-high performance liquid chromatography - mass spectrometry (UPLC-MS) (n = 297). Distributions of time to event outcomes were estimated by Kaplan-Meier analysis, and baseline characteristics adjusted Cox regression modeling was used to correlate markers' levels to time to event outcomes. Sixteen polar metabolites were significantly correlated with overall survival (OS) by univariate analysis (p < 0.025). Formate, 2-hydroxybutyrate, glycine and myo-inositol were selected for a multivariate model. The median OS was 6.6 months in the high-risk group compared to 11.4 months in the low risk group HR (Hazard Ratio) = 1.99, 95% C.I. (Confidence Interval) 1.45-2.68; p < 0.0001). Modeling of lipids by class (sphingolipids, acylcarnitines and lysophosphatidylcholines) revealed a median OS = 5.7 months vs. 11. 9 months for the high vs. low risk group. (HR: 2.23, 95% C.I. 1.55-3.20; p < 0.0001). These results demonstrate that metabolic profiles from pre-treatment samples may be useful to stratify clinical outcomes for mNSCLC patients receiving chemotherapy. Genomic and longitudinal measurements pre- and post-treatment may yield addition information to personalize treatment decisions further.

12.
Cancer Res ; 80(6): 1231-1233, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169889

RESUMO

Glioblastoma multiforme (GBM) tumors are highly metabolic and vascularized, yet little has been reported regarding the spatial localization of metabolic activity within these tumors. A mass spectrometry imaging (MSI) study by Randall and colleagues in this issue provides provocative observations of metabolic gradients in xenograft GBM models. The intensity of acylcarnitines is dramatically increased at tumor margins, which interface with normal tissue, but not in tumor margins at the edge of the brain. A secondary examination of drug metabolites suggests that the observed metabolic gradients are pharmacologically relevant. These findings underscore previously undescribed spatial metabolic heterogeneity in GBM biology and opportunities for MSI investigations.See related article by Randall et al., p. 1258.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Xenoenxertos , Humanos , Espectrometria de Massas , Metabolômica
13.
Nat Commun ; 11(1): 498, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980651

RESUMO

Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.


Assuntos
Glutamina/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Camundongos , Nucleosídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcoma/diagnóstico por imagem , Sarcoma/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tomografia Computadorizada por Raios X
14.
Cell Metab ; 31(1): 174-188.e7, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31761563

RESUMO

The remarkable cellular and genetic heterogeneity of soft tissue sarcomas (STSs) limits the clinical benefit of targeted therapies. Here, we show that expression of the gluconeogenic isozyme fructose-1,6-bisphosphatase 2 (FBP2) is silenced in a broad spectrum of sarcoma subtypes, revealing an apparent common metabolic feature shared by diverse STSs. Enforced FBP2 expression inhibits sarcoma cell and tumor growth through two distinct mechanisms. First, cytosolic FBP2 antagonizes elevated glycolysis associated with the "Warburg effect," thereby inhibiting sarcoma cell proliferation. Second, nuclear-localized FBP2 restrains mitochondrial biogenesis and respiration in a catalytic-activity-independent manner by inhibiting the expression of nuclear respiratory factor and mitochondrial transcription factor A (TFAM). Specifically, nuclear FBP2 colocalizes with the c-Myc transcription factor at the TFAM locus and represses c-Myc-dependent TFAM expression. This unique dual function of FBP2 provides a rationale for its selective suppression in STSs, identifying a potential metabolic vulnerability of this malignancy and possible therapeutic target.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células/genética , Frutose-Bifosfatase/metabolismo , Glicólise/genética , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo , Doxiciclina/farmacologia , Feminino , Frutose-Bifosfatase/genética , Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glicólise/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sarcoma/enzimologia , Sarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Rep ; 29(7): 1778-1788.e4, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722196

RESUMO

Drosophila Myc (dMyc) is highly conserved and functions as a transcription factor similar to mammalian Myc. We previously found that oncogenic Myc disrupts the molecular clock in cancer cells. Here, we demonstrate that misregulation of dMyc expression affects Drosophila circadian behavior. dMyc overexpression results in a high percentage of arrhythmic flies, concomitant with increases in the expression of clock genes cyc, tim, cry, and cwo. Conversely, flies with hypomorphic mutations in dMyc exhibit considerable arrhythmia, which can be rescued by loss of dMnt, a suppressor of dMyc activity. Metabolic profiling of fly heads revealed that loss of dMyc and its overexpression alter steady-state metabolite levels and have opposing effects on histidine, the histamine precursor, which is rescued in dMyc mutants by ablation of dMnt and could contribute to effects of dMyc on locomotor behavior. Our results demonstrate a role of dMyc in modulating Drosophila circadian clock, behavior, and metabolism.


Assuntos
Comportamento Animal , Ritmo Circadiano , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
16.
J Proteome Res ; 16(10): 3741-3752, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28849941

RESUMO

The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/genética , Metabolômica , Éteres Fosfolipídicos/metabolismo , Ciclo do Ácido Cítrico/genética , Gorduras na Dieta/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/genética , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Estresse Oxidativo/genética , Éteres Fosfolipídicos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Mol Cell ; 67(2): 252-265.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28689661

RESUMO

While maintaining the integrity of the genome and sustaining bioenergetics are both fundamental functions of the cell, potential crosstalk between metabolic and DNA repair pathways is poorly understood. Since histone acetylation plays important roles in DNA repair and is sensitive to the availability of acetyl coenzyme A (acetyl-CoA), we investigated a role for metabolic regulation of histone acetylation during the DNA damage response. In this study, we report that nuclear ATP-citrate lyase (ACLY) is phosphorylated at S455 downstream of ataxia telangiectasia mutated (ATM) and AKT following DNA damage. ACLY facilitates histone acetylation at double-strand break (DSB) sites, impairing 53BP1 localization and enabling BRCA1 recruitment and DNA repair by homologous recombination. ACLY phosphorylation and nuclear localization are necessary for its role in promoting BRCA1 recruitment. Upon PARP inhibition, ACLY silencing promotes genomic instability and cell death. Thus, the spatial and temporal control of acetyl-CoA production by ACLY participates in the mechanism of DNA repair pathway choice.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Proteína BRCA1/metabolismo , Núcleo Celular/enzimologia , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Células A549 , ATP Citrato (pro-S)-Liase/genética , Acetilação , Animais , Proteína BRCA1/genética , Núcleo Celular/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Instabilidade Genômica , Glucose/metabolismo , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , Reparo de DNA por Recombinação/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular , Serina , Fatores de Tempo , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
18.
Cell Metab ; 25(4): 961-974.e4, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380384

RESUMO

The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism.


Assuntos
Relógios Circadianos/genética , Metaboloma/genética , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ritmo Circadiano/genética , Creatina/metabolismo , Criptocromos/metabolismo , Redes Reguladoras de Genes , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Nitrogênio/metabolismo , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 114(8): E1528-E1535, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167750

RESUMO

Recent studies have shown that human cytomegalovirus (HCMV) can induce a robust increase in lipid synthesis which is critical for the success of infection. In mammalian cells the central precursor for lipid biosynthesis, cytosolic acetyl CoA (Ac-CoA), is produced by ATP-citrate lyase (ACLY) from mitochondria-derived citrate or by acetyl-CoA synthetase short-chain family member 2 (ACSS2) from acetate. It has been reported that ACLY is the primary enzyme involved in making cytosolic Ac-CoA in cells with abundant nutrients. However, using CRISPR/Cas9 technology, we have shown that ACLY is not essential for HCMV growth and virally induced lipogenesis. Instead, we found that in HCMV-infected cells glucose carbon can be used for lipid synthesis by both ACLY and ACSS2 reactions. Further, the ACSS2 reaction can compensate for the loss of ACLY. However, in ACSS2-KO human fibroblasts both HCMV-induced lipogenesis from glucose and viral growth were sharply reduced. This reduction suggests that glucose-derived acetate is being used to synthesize cytosolic Ac-CoA by ACSS2. Previous studies have not established a mechanism for the production of acetate directly from glucose metabolism. Here we show that HCMV-infected cells produce more glucose-derived pyruvate, which can be converted to acetate through a nonenzymatic mechanism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/metabolismo , Ácido Acético/metabolismo , Acetilcoenzima A/metabolismo , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Lipogênese , ATP Citrato (pro-S)-Liase/genética , Acetato-CoA Ligase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Infecções por Citomegalovirus/virologia , Citosol/metabolismo , Fibroblastos , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Mitocôndrias/metabolismo , Cultura Primária de Células , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
20.
Metabolites ; 7(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098776

RESUMO

Previous work demonstrated that serum metabolomics can distinguish pancreatic cancer from benign disease. However, in the clinic, non-pancreatic periampullary cancers are difficult to distinguish from pancreatic cancer. Therefore, to test the clinical utility of this technology, we determined whether any pancreatic and periampullary adenocarcinoma could be distinguished from benign masses and biliary strictures. Sera from 157 patients with malignant and benign pancreatic and periampullary lesions were analyzed using proton nuclear magnetic resonance (¹H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Multivariate projection modeling using SIMCA-P+ software in training datasets (n = 80) was used to generate the best models to differentiate disease states. Models were validated in test datasets (n = 77). The final ¹H-NMR spectroscopy and GC-MS metabolomic profiles consisted of 14 and 18 compounds, with AUROC values of 0.74 (SE 0.06) and 0.62 (SE 0.08), respectively. The combination of ¹H-NMR spectroscopy and GC-MS metabolites did not substantially improve this performance (AUROC 0.66, SE 0.08). In patients with adenocarcinoma, glutamate levels were consistently higher, while glutamine and alanine levels were consistently lower. Pancreatic and periampullary adenocarcinomas can be distinguished from benign lesions. To further enhance the discriminatory power of metabolomics in this setting, it will be important to identify the metabolomic changes that characterize each of the subclasses of this heterogeneous group of cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA