Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15224, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645612

RESUMO

The proteasome is essential for the selective degradation of most cellular proteins and is fine-tuned according to cellular needs. Proteasome activators serve as building blocks to adjust protein turnover in cell growth and differentiation. Understanding the cellular function of proteasome activation in more detail offers a new strategy for therapeutic targeting of proteasomal protein breakdown in disease. The role of the proteasome activator PA200 in cell function and its regulation in disease is unknown. In this study, we investigated the function of PA200 in myofibroblast differentiation and fibrotic tissue remodeling. PA200 was upregulated in hyperplastic basal cells and myofibroblasts of fibrotic lungs from patients with idiopathic pulmonary fibrosis. Increased expression of PA200 and enhanced formation of PA200-proteasome complexes was also evident in experimental fibrosis of the lung and kidney in vivo and in activated primary human myofibroblasts of the lung in vitro. Transient silencing and overexpression revealed that PA200 functions as a negative regulator of myofibroblast differentiation of human but not mouse cells. Our data thus suggest an unexpected and important role for PA200 in adjusting myofibroblast activation in response to pro-fibrotic stimuli, which fails in idiopathic pulmonary fibrosis.


Assuntos
Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Rim/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miofibroblastos/citologia , Miofibroblastos/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
Am J Respir Crit Care Med ; 192(9): 1089-101, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26207697

RESUMO

RATIONALE: The ubiquitin-proteasome system is critical for maintenance of protein homeostasis by degrading polyubiquitinated proteins in a spatially and temporally controlled manner. Cell and protein homeostasis are altered upon pathological tissue remodeling. Dysregulation of the proteasome has been reported for several chronic diseases of the heart, brain, and lung. We hypothesized that proteasome function is altered upon fibrotic lung remodeling, thereby contributing to the pathogenesis of idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To investigate proteasome function during myofibroblast differentiation. METHODS: We treated lung fibroblasts with transforming growth factor (TGF)-ß and examined proteasome composition and activity. For in vivo analysis, we used mouse models of lung fibrosis and fibrotic human lung tissue. MEASUREMENTS AND MAIN RESULTS: We demonstrate that induction of myofibroblast differentiation by TGF-ß involves activation of the 26S proteasome, which is critically dependent on the regulatory subunit Rpn6. Silencing of Rpn6 in primary human lung fibroblasts counteracted TGF-ß-induced myofibroblast differentiation. Activation of the 26S proteasome and increased expression of Rpn6 were detected during bleomycin-induced lung remodeling and fibrosis. Importantly, Rpn6 is overexpressed in myofibroblasts and basal cells of the bronchiolar epithelium in lungs of patients with IPF, which is accompanied by enhanced protein polyubiquitination. CONCLUSIONS: We identified Rpn6-dependent 26S proteasome activation as an essential feature of myofibroblast differentiation in vitro and in vivo, and our results suggest it has an important role in IPF pathogenesis.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA