Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733647

RESUMO

Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE: Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides.


Assuntos
Hemaglutininas Virais/imunologia , Vacina contra Sarampo/administração & dosagem , Vírus do Sarampo/efeitos dos fármacos , Sarampo/prevenção & controle , Nanopartículas/administração & dosagem , Peptídeos/imunologia , Proteínas Virais de Fusão/imunologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Colesterol/química , Feminino , Meia-Vida , Hemaglutininas Virais/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Sarampo/imunologia , Sarampo/mortalidade , Sarampo/virologia , Vacina contra Sarampo/síntese química , Vírus do Sarampo/química , Vírus do Sarampo/imunologia , Nanopartículas/química , Peptídeos/síntese química , Sigmodontinae , Análise de Sobrevida , Proteínas Virais de Fusão/química , Internalização do Vírus/efeitos dos fármacos
2.
J Virol ; 89(2): 1143-55, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378493

RESUMO

UNLABELLED: Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV H and the fusion (F) envelope glycoprotein; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad-repeat (HR) regions of F can potently inhibit MV infection at the entry stage. We show here that specific features of H's interaction with its receptors modulate the susceptibility of MV F to peptide fusion inhibitors. A higher concentration of inhibitory peptides is required to inhibit F-mediated fusion when H is engaged to its nectin-4 receptor than when H is engaged to its CD150 receptor. Peptide inhibition of F may be subverted by continued engagement of receptor by H, a finding that highlights the ongoing role of H-receptor interaction after F has been activated and that helps guide the design of more potent inhibitory peptides. Intranasal administration of these peptides results in peptide accumulation in the airway epithelium with minimal systemic levels of peptide and efficiently prevents MV infection in vivo in animal models. The results suggest an antiviral strategy for prophylaxis in vulnerable and/or immunocompromised hosts. IMPORTANCE: Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that parenterally delivered fusion-inhibitory peptides protect mice from lethal CNS MV disease. Here we show, using established small-animal models of MV infection, that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. Since the fusion inhibitors are stable at room temperature, this intranasal strategy is feasible even outside health care settings, could be used to protect individuals and communities in case of MV outbreaks, and could complement global efforts to control measles.


Assuntos
Antivirais/administração & dosagem , Vírus do Sarampo/efeitos dos fármacos , Sarampo/prevenção & controle , Oligopeptídeos/administração & dosagem , Proteínas Virais de Fusão/administração & dosagem , Internalização do Vírus/efeitos dos fármacos , Administração Intranasal , Animais , Quimioprevenção/métodos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sigmodontinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA