Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Metabolites ; 14(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195530

RESUMO

The popularity of e-cigarettes (vaping) has soared, creating a public health crisis among teens and young adults. Chronic vaping can induce gut inflammation and reduce intestinal barrier function through the production of the proinflammatory molecule hydrogen sulfide (H2S). This is particularly concerning for people with HIV (PWH) as they already face impaired immune function and are at a higher risk for metabolic dysregulation, diabetes, and chronic liver disease. Furthermore, PWH experience unhealthy behaviors, making it crucial to understand the systemic metabolic dysregulation and pathophysiological mechanisms associated with vaping in this population. Here, we employed liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to investigate the upper respiratory, circulation, and gut metabolic profiles of PWH who vape (n = 7) and smoke combustible tobacco/marijuana (n = 6) compared to control participants who did not vape or smoke (n = 10). This hypothesis-generating exploratory study revealed systemic alterations in purine, neurotransmitter, and vitamin B metabolisms and tissue-specific changes in inflammatory pathways and cryptic sulfur cycling associated with vaping and combustible tobacco/marijuana smoking in PWH. In addition, this study provides the first link between microbial-derived metabolite 2,3-dihydroxypropane-1-sulfonate (DHPS) and vaping/smoking (tobacco and marijuana)-induced metabolic dyshomeostasis in the gut. These findings highlight the importance of identifying the full biological and clinical significance of the physiological changes and risks associated with vaping.

2.
Alcohol ; 101: 45-51, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306109

RESUMO

People living with HIV (PLWH) are at increased risk for noncommunicable diseases such as lung disease in part due to opportunistic infections including pneumonia. HIV infection is associated with increased prevalence of impaired lung function and abnormal gas exchange. Alcohol use disorder (AUD) is exceedingly common in PLWH and is associated with higher risk of pneumonia in PLWH. Alcohol use may lead to lung damage through several mechanisms. Data on the long-term effect of AUD on pulmonary function in PLWH are sparse and conflicting. To evaluate this relationship, we conducted a cross-sectional analysis of adult PLWH in care in Louisiana. We hypothesized that chronic alcohol use would be associated with subsequent pulmonary dysfunction in a dose-dependent fashion. All participants performed standardized spirometry on study entry. In total, 350 participants with acceptable spirometry were included in this analysis. Thirty-one percent of participants were female. Women reported less lifetime alcohol use and less smoking; however, they reported more chronic respiratory symptoms. In adjusted models, total lifetime alcohol use was not associated with spirometry measures of pulmonary function. HIV-related variables (CD4 count and viral load) were also not associated with measures of pulmonary function. We then conducted sex-stratified analyses to eliminate residual confounding of sex and similarly found no association of total lifetime alcohol use and pulmonary function. We found no association of AUDIT score or early life alcohol use and pulmonary function. In latent class factor analysis, current heavy alcohol use was associated with lower measures of pulmonary function as compared to former heavy alcohol use. In summary, in this cohort of New Orleanian men and women living with HIV with robust measures of alcohol use, though total lifetime alcohol use and early life alcohol use were not associated with pulmonary function, current heavy alcohol use was associated with impaired pulmonary function.


Assuntos
Alcoolismo , Infecções por HIV , Pneumopatias , Pneumonia , Adulto , Alcoolismo/epidemiologia , Contagem de Linfócito CD4 , Estudos Transversais , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Pulmão , Masculino
3.
Biochem (Basel) ; 1(1): 1-18, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35937039

RESUMO

Intracellular reduction-oxidation (RedOx) status mediates a myriad of critical biological processes. Importantly, RedOx status regulates the differentiation of hematopoietic stem and progenitor cells (HSPCs), mesenchymal stromal cells (MSCs) and maturation of CD8+ T Lymphocytes. In most cells, mitochondria are the greatest contributors of intracellular reactive oxygen species (ROS). Excess ROS leads to mitochondrial DNA (mtDNA) damage and protein depletion. We have developed a fluorescence-activated cell sorting (FACS)-based protocol to simultaneously analyze RedOx status and mtDNA integrity. This simultaneous analysis includes measurements of ROS (reduced glutathione (GSH)), ATP5H (nuclear encoded protein), MTCO1 (mitochondrial DNA encoded protein), and cell surface markers to allow discrimination of different cell populations. Using the ratio of MTCO1 to ATP5H median fluorescence intensity (MFI), we can gain an understanding of mtDNA genomic stability, since MTCO1 levels are decreased when mtDNA becomes significantly damaged. Furthermore, this workflow can be optimized for sorting cells, using any of the above parameters, allowing for downstream quantification of mtDNA genome copies/nucleus by quantitative PCR (qPCR). This unique methodology can be used to enhance analyses of the impacts of pharmacological interventions, as well as physiological and pathophysiological processes on RedOx status along with mitochondrial dynamics in most cell types.

4.
Chem Biol Interact ; 325: 109131, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417163

RESUMO

We have previously demonstrated promotion of diethylnitrosamine (DEN) initiated liver tumorigenesis after feeding diets high in fat or ethanol (EtOH) to male mice. This was accompanied by hepatic induction of the proto-oncogene PIKE (Agap2). Switch of dietary protein from casein to soy protein isolate (SPI) significantly reduced tumor formation in these models. We have linked EtOH consumption in mice to microbial dysbiosis. Adoptive transfer studies demonstrate that microbiota from mice fed ethanol can induce hepatic steatosis in the absence of ethanol suggesting that microbiota or the microbial metabolome play key roles in development of fatty liver disease. Feeding SPI significantly changed gut bacteria in mice increasing alpha diversity (P < 0.05) and levels of Clostidiales spp. Feeding soy formula to piglets also resulted in significant changes in microbiota, the pattern of bile acid metabolites and in inhibition of the intestinal-hepatic FXR/FGF19-SHP pathway which has been linked to both steatosis and hepatocyte proliferation. Moreover, feeding SPI also resulted in induction of hepatic PPARα signaling and inhibition of PIKE mRNA expression coincident with inhibition of steatosis and cancer prevention. Feeding studies in the DEN model with differing dietary fats demonstrated tumor promotion specific to the saturated fat, cocoa butter relative to diets containing olive oil or corn oil associated with microbial dysbiosis including dramatic increases in Lachnospiraceae particularly from the genus Coprococcus. Immunohistochemical analysis demonstrated that tumors from EtOH-fed mice and patients with alcohol-associated HCC also expressed high levels of a novel cytochrome P450 enzyme CYP2W1. Additional adoptive transfer experiments and studies in knockout mice are required to determine the exact relationship between soy effects on the microbiota, expression of PIKE, CYP2W1, PPARα activation and prevention of tumorigenesis.


Assuntos
Família 2 do Citocromo P450/metabolismo , Microbioma Gastrointestinal , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/prevenção & controle , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Proteínas de Soja/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
AIDS Res Hum Retroviruses ; 36(9): 742-752, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449647

RESUMO

Unhealthy alcohol use is prevalent among persons living with HIV (PLWH). Aging and increased survival of PLWH on antiretroviral therapy (ART) are complicated by metabolic dysregulation and increased risk of insulin resistance (IR) and diabetes mellitus. The objective of this study was to determine the prevalence and association of IR with unhealthy alcohol use in adult in-care PLWH. A cross-sectional analysis of metabolic parameters and alcohol use characteristics was conducted in adult PLWH enrolled in the New Orleans Alcohol Use in HIV (NOAH) Study. IR was estimated using homeostatic model assessment (HOMA-IR), triglyceride index, and McAuley index and beta cell function (HOMA-ß). Alcohol use was assessed using Alcohol Use Disorders Identification Test (AUDIT)-C, 30-day timeline followback (TLFB), lifetime drinking history, and phosphatidylethanol (PEth) measures. A total of 351 participants, with a mean age [±standard deviation (SD)] of 48.1 ± 10.4 years, were included (69.6% male). Of these, 57% had an AUDIT-C score of 4 or greater, indicating unhealthy alcohol use. Mean body mass index (BMI) was 27.2 ± 7.0 kg/m2, 36.4% met criteria for metabolic syndrome, and 14% were diagnosed with diabetes. After adjusting for education, race, BMI, smoking status, viral load, CD4 count, use of protease inhibitors, statins, or metformin; physical activity and diabetes diagnosis, HOMA-IR, and McAuley index were negatively associated with AUDIT-C, and HOMA-ß cell function was negatively associated with AUDIT-C, PEth, and TLFB. Cross-sectional analysis of NOAH participants indicates that alcohol use is associated with decreased HOMA-ß cell function, suggesting dysregulation of endocrine pancreatic function.


Assuntos
Alcoolismo , Infecções por HIV , Resistência à Insulina , Adulto , Alcoolismo/complicações , Alcoolismo/epidemiologia , Criança , Estudos Transversais , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Masculino , Prevalência
6.
Int J Med Sci ; 17(1): 103-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929744

RESUMO

Beyond their role in bone and lung homeostasis, mesenchymal stem cells (MSCs) are becoming popular in cell therapy. Various insults may disrupt the repair mechanisms involving MSCs. One such insult is smoking, which is a major risk factor for osteoporosis and respiratory diseases. Upon cigarette smoke-induced damage, a series of reparatory mechanisms ensue; one such mechanism involves Glycosaminoglycans (GAG). One of these GAGs, namely hyaluronic acid (HA), serves as a potential therapeutic target in lung injury. However, much of its mechanisms of action through its major receptor CD44 remains unexplored. Our previous studies have identified and functionally validated that both cortactin (CTTN: marker of motility) and Survivin (BIRC5: required for cell survival) act as novel HA/CD44-downstream transcriptional targets underpinning cell motility. Here, human MSCs were treated with "Water-pipe" smoke to investigate the effects of cigarette smoke condensate (CSC) on these HA-CD44 novel signaling pathways. Our results show that CSC decreased the expression of both CD44 and its downstream targets CTTN and BIRC5 in MSCs, and that HA reversed these effects. Interestingly, CSC inhibited migration and invasion of MSCs upon CD44-targeted RNAi treatment. This shows the importance of CD44-HA/CTTN and CD44-HA/BIRC5 signaling pathways in MSC motility, and further suggests that these signaling pathways may provide a novel mechanism implicated in migration of MSCs during repair of lung tissue injury. These findings suggest that one should use caution before utilizing MSC from donors with history of smoking, and further pave the way towards the development of targeted therapeutic approaches against CD44-associated diseases.


Assuntos
Fumar Cigarros/efeitos adversos , Cortactina/genética , Receptores de Hialuronatos/genética , Lesão Pulmonar/genética , Survivina/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/genética , Humanos , Ácido Hialurônico/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos
7.
Alcohol Clin Exp Res ; 43(10): 2122-2133, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407808

RESUMO

BACKGROUND: Alcohol use causes significant disruption of intestinal microbial communities, yet exactly how these dysbiotic communities interact with the host is unclear. We sought to understand the role of microbial products associated with alcohol dysbiosis in mice on intestinal permeability and immune activation in an in vitro model system. METHODS: Microbiota samples from binge-on-chronic alcohol-fed and pair-fed male and female mice were cultured in Gifu Anaerobic Broth for 24 hours under anaerobic conditions. Live/whole organisms were removed, and microbial products were collected and added to human peripheral blood mononuclear cells (PBMCs) or polarized C2BBe1 intestinal epithelial monolayers. Following stimulation, transepithelial electrical resistance (TEER) was measured using a volt/ohm meter and immune activation of PBMC was assessed via flow cytometry. RESULTS: Microbial products from male and female alcohol-fed mice significantly decreased TEER (mean percentage change from baseline alcohol-fed 0.86 Ω/cm2 vs. pair-fed 1.10 Ω/cm2 ) compared to microbial products from control mice. Following ex vivo stimulation, immune activation of PBMC was assessed via flow cytometry. We found that microbial products from alcohol-fed mice significantly increased the percentage of CD38+ CD4+ (mean alcohol-fed 17.32% ± 0.683% standard deviation (SD) vs. mean pair-fed 14.2% ± 1.21% SD, p < 0.05) and CD8+ (mean alcohol-fed 20.28% ± 0.88% SD vs. mean pair-fed 12.58% ± 3.59% SD, p < 0.05) T cells. CONCLUSIONS: Collectively, these data suggest that microbial products contribute to immune activation and intestinal permeability associated with alcohol dysbiosis. Further, utilization of these ex vivo microbial product assays will allow us to rapidly assess the impact of microbial products on intestinal permeability and immune activation and to identify probiotic therapies to ameliorate these defects.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Microbioma Gastrointestinal , Sistema Imunitário/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , ADP-Ribosil Ciclase 1/imunologia , Animais , Bactérias Anaeróbias/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/microbiologia , Antígenos CD4/imunologia , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Feminino , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
8.
J Am Med Dir Assoc ; 20(1): 70-75.e2, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149984

RESUMO

OBJECTIVES: Body composition alterations occur during aging. The purpose of the present analysis was to explore the functional consequences of the overlap of sarcopenia and osteoporosis, and the potential role of insulin-like growth factor 1 (IGF1) in their development in the oldest old. SETTING AND PARTICIPANTS: Eighty-seven nonagenarians from the Louisiana Healthy Aging Study were included. MEASURES: The definition of sarcopenia was based on appendicular lean mass (ALM). Osteoporosis was diagnosed based on bone mineral density (BMD) T score. Four phenotypes were compared: (1) healthy body composition, that is, nonosteoporotic nonsarcopenic (CO, control group), (2) osteoporotic (O, low BMD T score), (3) sarcopenic (S, low ALM), and (4) osteosarcopenic (OS, low BMD T score and low ALM). Sex- and age-specific IGF1-Standard Deviation Scores (SDS) were calculated. The Continuous Scale-Physical Functional Performance (CS-PFP) test was performed. RESULTS: In OS men, IGF1-SDS values (-0.61 ±0.37 vs -0.04 ± 0.52, P = .02) were lower than those in CO males (control group), whereas IGF1-SDS were similar in the 4 body composition phenotypes in women. In men only, ALM was positively associated with IGF1-SDS values (P = .01) independent of age and C-reactive protein concentration. Regarding bone health, we found no association between IGF1-SDS values and BMD. IGF1-SDS was not associated with functional performance (CS-PFP) in men and women. CONCLUSIONS/IMPLICATIONS: IGF1 sensitivity in skeletal muscle and bone may differ by sex in the oldest old. IGF1 status did not appear to affect physical functionality. Determinants and clinical and functional characteristics of osteosarcopenia need to be further investigated in order to define conclusive diagnostic criteria.


Assuntos
Composição Corporal , Avaliação Geriátrica , Fator de Crescimento Insulin-Like I/metabolismo , Osteoporose/diagnóstico , Sarcopenia/diagnóstico , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , Feminino , Fragilidade , Humanos , Louisiana , Masculino , Fenótipo , Polimedicação , Albumina Sérica/metabolismo
9.
Alcohol ; 80: 33-43, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30213614

RESUMO

Alcohol use in persons living with HIV (PLWH) worsens the severity of bacterial pneumonia. However, the exact mechanism(s) by which this occurs remain ill-defined. We hypothesized that alcohol in the setting of HIV infection decreases Streptococcus pneumoniae clearance from the lung through mechanisms mediated by the gut microbiota. Humanized BLT (bone marrow, liver, thymus) mice were infected with 1 × 104 TCID50 of HIV (BAL and JRCSF strains) via intraperitoneal (i.p.) injection. One week post-HIV infection, animals were switched to a Lieber-DeCarli 5% ethanol diet or an isocaloric control diet for 10 days. Alcohol-fed animals were also given two binges of 2 g/kg ethanol on days 5 and 10. Feces were also collected, banked, and the community structures were analyzed. Mice were then infected with 1 × 105 CFU (colony-forming units) of S. pneumoniae and were sacrificed 48 h later. HIV-infected mice had viral loads of ∼2 × 104 copies/mL of blood 1 week post-infection, and exhibited an ∼57% decrease in the number of circulating CD4+ T cells at the time of sacrifice. Fecal microbial community structure was significantly different in each of the feeding groups, as well as with HIV infection. Alcohol-fed mice had a significantly higher burden of S. pneumoniae 48 h post-infection, regardless of HIV status. In follow-up experiments, female C57BL/6 mice were treated with a cocktail of antibiotics daily for 2 weeks and recolonized by gavage with intestinal microbiota from HIV+ ethanol-fed, HIV+ pair-fed, HIV- ethanol-fed, or HIV- pair-fed mice. Recolonized mice were then infected with S. pneumoniae and were sacrificed 48 h later. The intestinal microbiota from alcohol-fed mice (regardless of HIV status) significantly impaired clearance of S. pneumoniae. Collectively, these data indicate that alcohol feeding, as well as alcohol-associated intestinal dysbiosis, compromise pulmonary host defenses against pneumococcal pneumonia. Determining whether HIV infection acts synergistically with alcohol use in impairing pulmonary host defenses will require additional study.


Assuntos
Suscetibilidade a Doenças/induzido quimicamente , Disbiose/microbiologia , Etanol/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por HIV/complicações , Pneumonia Pneumocócica/etiologia , Animais , Transplante de Medula Óssea , Contagem de Linfócito CD4 , Modelos Animais de Doenças , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/virologia , Disbiose/virologia , Feminino , Microbioma Gastrointestinal/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Fígado , Camundongos , RNA Ribossômico 16S/genética , Timo/transplante , Transplante Heterólogo , Carga Viral/efeitos dos fármacos
10.
J Nutr Biochem ; 48: 94-102, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797931

RESUMO

Walnuts are rich in omega-3 fatty acids, phytochemicals and antioxidants making them unique compared to other foods. Consuming walnuts has been associated with health benefits including a reduced risk of heart disease and cancer. Dysbiosis of the gut microbiome has been linked to several chronic diseases. One potential mechanism by which walnuts may exert their health benefit is through modifying the gut microbiome. This study identified the changes in the gut microbial communities that occur following the inclusion of walnuts in the diet. Male Fischer 344 rats (n=20) were randomly assigned to one of two diets for as long as 10 weeks: (1) walnut (W), and (2) replacement (R) in which the fat, fiber, and protein in walnuts were matched with corn oil, protein casein, and a cellulose fiber source. Intestinal samples were collected from the descending colon, the DNA isolated, and the V3-V4 hypervariable region of 16S rRNA gene deep sequenced on an Illumina MiSeq for characterization of the gut microbiota. Body weight and food intake did not differ significantly between the two diet groups. The diet groups had distinct microbial communities with animals consuming walnuts displaying significantly greater species diversity. Walnuts increased the abundance of Firmicutes and reduced the abundance of Bacteriodetes. Walnuts enriched the microbiota for probiotic-type bacteria including Lactobacillus, Ruminococcaceae, and Roseburia while significantly reducing Bacteroides and Anaerotruncus. The class Alphaproteobacteria was also reduced. Walnut consumption altered the gut microbial community suggesting a new mechanism by which walnuts may confer their beneficial health effects.


Assuntos
Microbioma Gastrointestinal , Juglans , Animais , Peso Corporal , Dieta , Ingestão de Alimentos , Microbioma Gastrointestinal/genética , Masculino , Metagenoma , Ratos Endogâmicos F344
11.
Vaccine ; 35(4): 672-679, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28012778

RESUMO

RATIONALE: Pneumocystis pneumonia is a major cause of morbidity and mortality in HIV-infected subjects, cancer patients undergoing chemotherapy and solid organ transplant recipients. No vaccine is currently available. By chemical labeling coupled with proteomic approach, we have identified a putative surface protein (SPD1, Broad Institute gene accession number PNEG_01848) derived from single suspended P. murina cysts. SPD1 was expressed in an insect cell line and tested for vaccine development. METHODS: Mice were immunized with SPD1 plus adjuvant MF-59 by subcutaneous injection. Three weeks after the last immunization, CD4+ cells were depleted with anti-CD4 antibody GK1.5. The mice were then challenged with 2×105Pneumocystis organisms. Mice were sacrificed at 4 and 6weeks after PC challenge. Spleen/lung cells and serum were harvested. B cells and memory B cells were assessed via flow cytometry. Specific Pneumocystis IgG antibody was measured by ELISA before and after challenge. Infection burden was measured as real-time PCR for P. murina rRNA. RESULTS: Normal mice infected with Pneumocystis mounted a serum IgG antibody response to SPD1. Serum from rhesus macaques exposed to Pneumocystis showed a similar serum IgG response to purified SPD1. SPD1 immunization increased B cell and memory B cell absolute cell counts in CD4-depleted Balb/c mice post Pneumocystis challenge in spleen and lung. Immunization with SPD1 significantly increased specific Pneumocystis IgG antibody production before and after challenge. Mice immunized with SPD1 showed significantly decreased P. murina copy number compared with mice that did not receive SPD1 at 6weeks after challenge. CONCLUSION: Immunization with SPD1 provides protective efficacy against P. murina infection. SPD1 protection against Pneumocystis challenge is associated with enhanced memory B cell production and higher anti-Pneumocystis IgG antibody production. SPD1 is a potential vaccine candidate to prevent or treat pulmonary infection with Pneumocystis.


Assuntos
Anticorpos Antifúngicos/sangue , Linfócitos B/imunologia , Vacinas Fúngicas/imunologia , Proteínas de Membrana/imunologia , Peptídeo Hidrolases/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/prevenção & controle , Animais , Formação de Anticorpos , Antígenos de Fungos/genética , Antígenos de Fungos/imunologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Vacinas Fúngicas/administração & dosagem , Vacinas Fúngicas/genética , Pulmão/microbiologia , Macaca mulatta , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/genética , Pneumocystis/enzimologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
12.
J Immunol ; 196(6): 2655-65, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864029

RESUMO

Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients, particularly those infected with HIV. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 d postinfection even after CD4(+) T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD11b(+) macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Furthermore, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared with control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. To our knowledge, our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection.


Assuntos
Vacinas Fúngicas/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Pneumocystis/imunologia , Pneumonia por Pneumocystis/imunologia , Administração Oral , Animais , Anticorpos Antifúngicos/metabolismo , Feminino , Humanos , Imunização , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Pulmão/microbiologia , Ativação Linfocitária , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia por Pneumocystis/prevenção & controle
13.
Alcohol Clin Exp Res ; 38(7): 1993-2000, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24942272

RESUMO

BACKGROUND: Chronic alcohol intoxication suppresses immune function and increases osteoporosis risk suggesting bone-tissue cytotoxicity. Human immunodeficiency virus infection leads to similar impairments. This study investigated the effects of chronic alcohol administration during the early stage of simian immunodeficiency virus (SIV) infection on hematopoietic stem and progenitor cells (HSPCs) and their differentiated progeny in the bone marrow and peripheral blood of rhesus macaques. METHODS: Rhesus macaques were administered alcohol or sucrose daily for a period of 3 months prior to intrarectal inoculation with 250 TCID50 of SIVmac251 . Bone marrow aspirates and blood samples were taken prior to and 2 weeks after SIV infection. Bone marrow cells (BMCs) were assessed using flow cytometric phenotyping for upstream HSPCs and for differentiated cells of the monocyte-granulocyte lineages. Likewise, cells were quantitated in peripheral blood. RESULTS: Of the bone marrow HSPCs, only the common lymphoid progenitor (CLP) was altered by alcohol administration pre-SIV (38 ± 9.4/10(6) BMCs vs. 226 ± 64.1/10(6) BMCs, sucrose vs. alcohol). Post-SIV, the frequency of CLPs in the bone marrow of alcohol-administered macaques decreased compared with the sucrose-administered macaques (107 ± 47.6/10(6) BMCs vs. 43 ± 16.3/10(6) BMCs). However, marrow mature cells of the monocyte lineage, specifically macrophages and osteoclast progenitors, were increased by both chronic alcohol administration and SIV infection (287% and 662%, respectively). As expected, mature cells such as granulocytes (polymorphonuclear cells), B cells, and CD4+ T cells in the peripheral blood were decreased by SIV infection (37 to 62% decline from preinfection), but not affected after 3 months of chronic alcohol administration. CONCLUSIONS: Chronic alcohol administration disrupts myelomonocytic development in the bone marrow during the early period of SIV infection promoting macrophage and osteoclast lineages. We predict this shift in CLP:macrophage/osteoclast balance creates an environment that favors bone resorption and immunosuppression.


Assuntos
Alcoolismo/patologia , Alcoolismo/fisiopatologia , Etanol/administração & dosagem , Etanol/efeitos adversos , Mielopoese/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Alcoolismo/sangue , Alcoolismo/complicações , Animais , Medula Óssea/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Macaca mulatta , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/sangue
14.
Med Sci (Basel) ; 2(1): 37-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28868162

RESUMO

Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC) pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs). Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT) recipients with a history of smoking.

15.
Crit Care Med ; 39(9): 2121-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21602669

RESUMO

OBJECTIVE: Granulocytopenia frequently occurs in alcohol abusers with severe bacterial infection, which strongly correlates with poor clinical outcome. Knowledge of the molecular mechanisms underlying the granulopoietic response to bacterial infection remains limited. This study investigated the involvement of stem cell antigen-1 expression by granulocyte lineage-committed progenitors in the granulopoietic response to septicemia and how alcohol affected this response. DESIGN: : Laboratory investigation. SETTING: University laboratory. SUBJECTS: Male Balb/c mice. INTERVENTIONS: Thirty mins after intraperitoneal injection of alcohol (20% ethanol in saline at 5 g of ethanol/kg) or saline, mice received an intravenous Escherichia coli challenge. MEASUREMENTS AND MAIN RESULTS: E. coli septicemia activated stem cell antigen-1 expression by marrow immature granulocyte differentiation antigen-1 precursors which correlated with an increase in proliferation, granulocyte macrophage colony-forming unit production, and expansion of this granulopoietic precursor cell pool. Acute alcohol treatment suppressed stem cell antigen-1 activation and inhibited the infection-induced increases in proliferation, granulocyte macrophage colony-forming unit production, and expansion the of immature granulocyte differentiation antigen-1 precursor cell population. Consequently, recovery of the marrow mature granulocyte differentiation antigen-1 cell population after E. coli challenge was impaired. Stem cell antigen-1 was induced in sorted granulocyte differentiation antigen-1, stem cell antigen-1' cells by lipopolysaccharide-stimulated C-Jun kinase activation that was also inhibited by alcohol. Furthermore, stem cell antigen-1 knockout mice failed to expand the marrow immature granulocyte differentiation antigen-1 cell pool and demonstrated fewer newly produced granulocytes in the circulation after the E. coli challenge. CONCLUSIONS: Alcohol suppresses the stem cell antigen-1 response in granulocyte lineage-committed precursors and restricts granulocyte production during septicemia, which may serve as a novel mechanism underlying impaired host defense in alcohol abusers.


Assuntos
Agranulocitose/induzido quimicamente , Antígenos Ly/fisiologia , Etanol/farmacologia , Proteínas de Membrana/fisiologia , Sepse/imunologia , Agranulocitose/metabolismo , Agranulocitose/fisiopatologia , Animais , Western Blotting , Células da Medula Óssea/fisiologia , Infecções por Escherichia coli/imunologia , Citometria de Fluxo , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C
16.
Stem Cell Res Ther ; 2(3): 27, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21569482

RESUMO

INTRODUCTION: Multipotent stromal cells (MSCs) are currently in clinical trials for a number of inflammatory diseases. Recent studies have demonstrated the ability of MSCs to attenuate inflammation in rodent models of acute lung injury (ALI) suggesting that MSCs may also be beneficial in treating ALI. METHODS: To better understand how human MSCs (hMSCs) may act in ALI, the lungs of immunocompetent mice were exposed to lipopolysaccharide (LPS) and four hours later bone marrow derived hMSCs were delivered by oropharyngeal aspiration (OA). The effect of hMSCs on lung injury was assessed by measuring the lung wet/dry weight ratio and total protein in bronchoalveolar lavage (BAL) fluid 24 or 48 h after LPS. BAL fluid was also analyzed for the presence of inflammatory cells and cytokine expression by multiplex immunoassay. Microarray analysis of total RNA isolated from treated and untreated lungs was performed to elucidate the mechanism(s) involved in hMSC modulation of lung inflammation. RESULTS: Administration of hMSCs significantly reduced the expression of pro-inflammatory cytokines, neutrophil counts and total protein in bronchoalveolar lavage. There was a concomitant reduction in pulmonary edema. The anti-inflammatory effects of hMSCs were not dependent on localization to the lung, as intraperitoneal administration of hMSCs also attenuated LPS-induced inflammation in the lung. Microarray analysis revealed significant induction of tumor necrosis factor (TNF)-α-induced protein 6 (TNFAIP6/TSG-6) expression by hMSCs 12 h after OA delivery to LPS-exposed lungs. Knockdown of TSG-6 expression in hMSCs by RNA interference abrogated most of their anti-inflammatory effects. In addition, intra-pulmonary delivery of recombinant human TSG-6 reduced LPS-induced inflammation in the lung. CONCLUSIONS: These results show that hMSCs recapitulate the observed beneficial effects of rodent MSCs in animal models of ALI and suggest that the anti-inflammatory properties of hMSCs in the lung are explained, at least in part, by activation of hMSCs to secrete TSG-6.


Assuntos
Lesão Pulmonar Aguda/cirurgia , Células-Tronco Adultas/transplante , Moléculas de Adesão Celular/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Adulto , Células-Tronco Adultas/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Permeabilidade Capilar , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas/metabolismo , Células Cultivadas/transplante , Quimiotaxia de Leucócito , Citocinas/análise , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Edema Pulmonar/prevenção & controle , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Explosão Respiratória , Transplante Heterólogo
17.
J Immunol ; 186(7): 4306-13, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357267

RESUMO

Enhanced granulopoietic activity is crucial for host defense against bacterial pneumonia. Alcohol impairs this response. The underlying mechanisms remain obscure. G-CSF produced by infected lung tissue plays a key role in stimulating bone marrow granulopoiesis. This study investigated the effects of alcohol on G-CSF signaling in the regulation of marrow myeloid progenitor cell proliferation in mice with Streptococcus pneumoniae pneumonia. Chronic alcohol consumption plus acute alcohol intoxication suppressed the increase in blood granulocyte counts following intrapulmonary challenge with S. pneumoniae. This suppression was associated with a significant decrease in bone marrow granulopoietic progenitor cell proliferation. Alcohol treatment significantly enhanced STAT3 phosphorylation in bone marrow cells of animals challenged with S. pneumoniae. In vitro experiments showed that G-CSF-induced activation of STAT3-p27(Kip1) pathway in murine myeloid progenitor cell line 32D-G-CSFR cells was markedly enhanced by alcohol exposure. Alcohol dose dependently inhibited G-CSF-stimulated 32D-G-CSFR cell proliferation. This impairment of myeloid progenitor cell proliferation was not attenuated by inhibition of alcohol metabolism through either the alcohol dehydrogenase pathway or the cytochrome P450 system. These data suggest that alcohol enhances G-CSF-associated STAT3-p27(Kip1) signaling, which impairs granulopoietic progenitor cell proliferation by inducing cell cycling arrest and facilitating their terminal differentiation during the granulopoietic response to pulmonary infection.


Assuntos
Regulação para Baixo/imunologia , Etanol/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/fisiologia , Granulócitos/imunologia , Pneumonia Pneumocócica/imunologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Regulação para Baixo/efeitos dos fármacos , Granulócitos/microbiologia , Granulócitos/patologia , Hematopoese/efeitos dos fármacos , Hematopoese/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Regulação para Cima/efeitos dos fármacos
18.
Aging Cell ; 9(5): 698-708, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20569235

RESUMO

The search for longevity-determining genes in human has largely neglected the operation of genetic interactions. We have identified a novel combination of common variants of three genes that has a marked association with human lifespan and healthy aging. Subjects were recruited and stratified according to their genetically inferred ethnic affiliation to account for population structure. Haplotype analysis was performed in three candidate genes, and the haplotype combinations were tested for association with exceptional longevity. An HRAS1 haplotype enhanced the effect of an APOE haplotype on exceptional survival, and a LASS1 haplotype further augmented its magnitude. These results were replicated in a second population. A profile of healthy aging was developed using a deficit accumulation index, which showed that this combination of gene variants is associated with healthy aging. The variation in LASS1 is functional, causing enhanced expression of the gene, and it contributes to healthy aging and greater survival in the tenth decade of life. Thus, rare gene variants need not be invoked to explain complex traits such as aging; instead rare congruence of common gene variants readily fulfills this role. The interaction between the three genes described here suggests new models for cellular and molecular mechanisms underlying exceptional survival and healthy aging that involve lipotoxicity.


Assuntos
Envelhecimento/genética , Apolipoproteínas E/genética , Longevidade/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Variação Genética/genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Esfingosina N-Aciltransferase
19.
J Immunol ; 182(3): 1568-76, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155505

RESUMO

Alcohol abuse predisposes the host to bacterial infections. In response to bacterial infection, the bone marrow hematopoietic activity shifts toward granulocyte production, which is critical for enhancing host defense. This study investigated the hematopoietic precursor cell response to bacteremia and how alcohol affects this response. Acute alcohol intoxication was induced in BALB/c mice 30 min before initiation of Escherichia coli bacteremia. Bacteremia caused a significant increase in the number of bone marrow lineage (lin(-))-c-kit(+)Sca-1(+) cells. Marrow lin(-)c-kit(+)Sca-1(+) cells isolated from bacteremic mice showed an increase in CFU-granulocyte/macrophage activity compared with controls. In addition to enhanced proliferation of lin(-)c-kit(+)Sca-1(+) cells as reflected by BrdU incorporation, phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells primarily accounted for the rapid increase in marrow lin(-)c-kit(+)Sca-1(+) cells following bacteremia. Bacteremia increased plasma concentration of TNF-alpha. Culture of marrow lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells with murine rTNF-alpha for 24 h caused a dose-dependent increase in conversion of these cells to lin(-)c-kit(+)Sca-1(+) cells. Sca-1 mRNA expression by the cultured cells was also up-regulated following TNF-alpha stimulation. Acute alcohol intoxication inhibited the increase in the number of lin(-)c-kit(+)Sca-1(+) cells in the bone marrow after E. coli infection. Alcohol impeded the increase in BrdU incorporation into marrow lin(-)c-kit(+)Sca-1(+) cells in response to bacteremia. Alcohol also suppressed the plasma TNF-alpha response to bacteremia and inhibited TNF-alpha-induced phenotypic inversion of lin(-)c-kit(+)Sca-1(+)Sca-1(-) cells in vitro. These data show that alcohol inhibits the hematopoietic precursor cell response to bacteremia, which may serve as one mechanism underlying the impaired host defense in alcohol abusers with severe bacterial infections.


Assuntos
Intoxicação Alcoólica/imunologia , Bacteriemia/imunologia , Linhagem da Célula/imunologia , Infecções por Escherichia coli/imunologia , Células-Tronco Hematopoéticas/imunologia , Terapia de Imunossupressão , Proteínas de Membrana/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Intoxicação Alcoólica/microbiologia , Intoxicação Alcoólica/patologia , Animais , Antígenos Ly/biossíntese , Antígenos Ly/fisiologia , Bacteriemia/microbiologia , Bacteriemia/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Técnicas de Cultura de Células , Diferenciação Celular/imunologia , Citocinas/sangue , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Imunofenotipagem , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-kit/biossíntese
20.
Stem Cells Dev ; 17(3): 441-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18513160

RESUMO

Mesenchymal stem cells (MSCs) have attracted much attention as potential platforms for transgene delivery and cell-based therapy for human disease. MSCs have the capability to self-renew and retain multipotency after extensive expansion in vitro, making them attractive targets for ex vivo modification and autologous transplantation. Viral vectors, including lentiviral vectors, provide an efficient means for transgene delivery into human MSCs. In contrast, mouse MSCs have proven more difficult to transduce with lentiviral vectors than their human counterparts, and because many studies use mouse models of human disease, an improved method of transduction would facilitate studies using ex vivo-modified mouse MSCs. We have worked toward improving the production of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors and optimizing transduction conditions for mouse MSCs using lentivirus vectors pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G), the ecotropic murine leukemia virus envelope glycoprotein (MLV-E), and the glycoproteins derived from the Armstrong and WE strains of lymphocytic choriomeningitis virus (LCMV-Arm, LCMV-WE). Mouse MSCs were readily transduced following overnight incubation using a multiplicity of infection of at least 40. Alternatively, mouse MSCs in suspension were readily transduced after a 1-h exposure to lentiviral pseudotypes immediately following trypsin treatment or retrieval from storage in liquid nitrogen. LCMV-WE pseudotypes resulted in efficient transduction of mouse MSCs with less toxicity than VSV-G pseudotypes. In conclusion, our improved production and transduction conditions for lentiviral vectors resulted in efficient transduction of mouse MSCs, and these improvements should facilitate the application of such cells in the context of mouse models of human disease.


Assuntos
Células da Medula Óssea/citologia , Lentivirus/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Antígenos CD/metabolismo , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Vetores Genéticos , Glicoproteínas/metabolismo , Humanos , Lipídeos/farmacologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-8B/metabolismo , Tetraspanina 29 , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA