Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Fetal Diagn Ther ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555636

RESUMO

INTRODUCTION: To evaluate chemical stability and physical compatibility when combining fentanyl, rocuronium, and atropine in a fixed ratio to support intramuscular drug delivery during fetal intervention and surgery. METHODS: A highly concentrated combination of fentanyl, rocuronium, and atropine was created based on common prescribing practices at a maternal fetal care center. Chemical stability testing was completed using liquid chromatograph mass spectrometry-mass spectrometry (LC/MS-MS) to detect and quantitate atropine, rocuronium, and fentanyl, with fentanyl-d5 being an internal standard at 6-, 12, 24-, and 36-hours following sample preparation. Physical compatibility testing was completed using United State Pharmacopeia (USP)<788> recommended analytical technique of light obscuration (LO) in addition to novel backgrounded membrane imaging (BMI) at 6- and 24-hours following sample preparation. Physical compatibility was determined using USP<788> particle count limits for both techniques. RESULTS: Based on LC/MS-MS results, the samples retained expected medication concentrations at all time points tested. For physical compatibility testing, the particle counts met criteria to be considered compatible per USP<788> large volume particle count thresholds at 6 hours by both methods but exceeded tolerable thresholds at 24 hours. DISCUSSION/CONCLUSION: The combination of rocuronium, fentanyl, and atropine for intramuscular fetal administration are physically compatible and chemically stable for 6 hours.

2.
Neurooncol Adv ; 5(1): vdad111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795179

RESUMO

Background: Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB opening, allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Methods: Mice were orthotopically injected with a patient-derived diffuse midline glioma (DMG) cell line, BT245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa peak negative pressure, 1 Hz pulse repetition frequency, 10-ms pulse length, 3 min treatment time)/(25 µL/kg, i.v.) targeting to the tumor location. Results: In animals receiving panobinostat (10 mg/kg, i.p.) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, without significant increase of the drug in the forebrain. In mice receiving 3 weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes (P = .01). Furthermore, we showed the first survival benefit from FUS/MB improved delivery increasing the mean survival from 21 to 31 days (P < .0001). Conclusions: Our study demonstrates that FUS-mediated BBB disruption can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

3.
Physiol Rep ; 11(17): e15776, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653564

RESUMO

Metformin (MET) has the potential to activate p-AMPK and block mTORC1-induced proliferation of tubular cells in PKD kidneys. The aim of this study was to determine the effects of MET on cyst growth, kidney function, AMPK and mTOR signaling, and lactate levels in male PCK rats, a Pkhd1 gene mutation model of human autosomal recessive polycystic kidney disease (ARPKD). MET 300 mg/kg/day IP from days 28 to 84 of age resulted in a mean serum metformin level that was 10 times the upper limit of therapeutic, no effect on cyst indices, nephrotoxicity, and increased serum lactate. MET 150 mg/kg resulted in a therapeutic serum metformin level but had no effect on kidney weight, cyst indices, kidney function, or mTOR and autophagy proteins. In summary, a standard dose of MET was ineffective in reducing PKD, did not activate p-AMPK or suppress mTOR and the higher dose resulted in increased lactate levels and nephrotoxicity. In conclusion, the study dampens enthusiasm for human studies of MET in PKD. Doubling the metformin dose resulted in a 10-fold increase in mean blood levels and toxicity suggesting that the dosage range between therapeutic and toxic is narrow.


Assuntos
Cistos , Metformina , Doenças Renais Policísticas , Insuficiência Renal , Humanos , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP , Doenças Renais Policísticas/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Lactatos
4.
Fertil Steril ; 120(4): 890-898, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276947

RESUMO

OBJECTIVE: To establish conditions for effective hypothalamic suppression in women with normal and high body mass index (BMI) and test the hypothesis that intravenous (IV) administration of pulsatile recombinant follicle-stimulating hormone (rFSH) can overcome the clinically evident dysfunctional pituitary-ovarian axis in women with obesity. DESIGN: Prospective interventional study. SETTING: Academic medical center. PATIENT(S): Twenty-seven normal-weight women and 27 women with obesity, who were eumenorrheic and aged 21-39 years. INTERVENTION(S): Two-day frequent blood sampling study, in early follicular phase, before and after cetrorelix suppression of gonadotropins and exogenous pulsatile IV rFSH administration. MAIN OUTCOME MEASURE(S): Serum inhibin B and estradiol (E2) levels (basal and rFSH stimulated). RESULT(S): A modified gonadotropin-releasing hormone antagonism protocol effectively suppressed production of endogenous gonadotropins in women with normal and high BMIs, providing a model to address the functional role of FSH in the hypothalamic-pituitary-ovarian axis. The IV rFSH treatment resulted in equivalent serum levels and pharmacodynamics in normal-weight women and those with obesity. However, women with obesity exhibited reduced basal levels of inhibin B and E2 and a significantly decreased response to FSH stimulation. The BMI was inversely correlated with serum inhibin B and E2. In spite of this observed deficit in ovarian function, pulsatile IV rFSH treatment in women with obesity resulted in E2 and inhibin B levels comparable with those in normal-weight women, in the absence of exogenous FSH stimulation. CONCLUSION(S): Despite normalization of FSH levels and pulsatility by exogenous IV administration, women with obesity demonstrate ovarian dysfunction with respect to E2 and inhibin B secretion. Pulsatile FSH can partially correct the relative hypogonadotropic hypogonadism of obesity, thereby providing a potential treatment strategy to mitigate some of the adverse effects of high BMI on fertility, assisted reproduction, and pregnancy outcomes. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrials.gov #NCT02478775.


Assuntos
Hormônio Foliculoestimulante , Gonadotropinas , Gravidez , Feminino , Humanos , Estudos Prospectivos , Hormônio Foliculoestimulante Humano , Estradiol , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/tratamento farmacológico
5.
Expert Opin Ther Targets ; 27(4-5): 361-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243607

RESUMO

BACKGROUND: The Polycomb Repressor Complex 1 (PRC1) is an epigenetic regulator of differentiation and development, consisting of multiple subunits including RING1, BMI1, and Chromobox. The composition of PRC1 dictates its function and aberrant expression of specific subunits contributes to several diseases including cancer. Specifically, the reader protein Chromobox2 (CBX2) recognizes the repressive modifications including histone H3 lysine 27 tri-methylation (H3K27me3) and H3 lysine 9 dimethylation (H3K9me2). CBX2 is overexpressed in several cancers compared to the non-transformed cell counterparts, it promotes both cancer progression and chemotherapy resistance. Thus, inhibiting the reader function of CBX2 is an attractive and unique anti-cancer approach. RESEARCH DESIGN & METHODS: Compared with other CBX family members, CBX2 has a unique A/T-hook DNA binding domain that is juxtaposed to the chromodomain (CD). Using a computational approach, we constructed a homology model of CBX2 encompassing the CD and A/T hook domain. We used the model as a basis for peptide design and identified blocking peptides that are predicted to directly bind the CD and A/T-hook regions of CBX2. These peptides were tested in vitro and in vivo models. CONCLUSION: The CBX2 blocking peptide significantly inhibited both 2D and 3D growth of ovarian cancer cells, downregulated a CBX2 target gene, and blunted tumor growth in vivo.


Assuntos
Neoplasias , Complexo Repressor Polycomb 1 , Humanos , Complexo Repressor Polycomb 1/metabolismo , Lisina , Proteínas do Grupo Polycomb , Peptídeos
6.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066205

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB disruption (BBBD), allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Mice were orthotopically injected with a patient-derived DMG cell line, BT-245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa PNP, 1 Hz PRF, 10 ms PL, 3 min treatment time) / (25 µL/kg, IV) targeting to the tumor location. In animals receiving panobinostat (10 mg/kg, IP) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, with only insignificant increase of the drug in the forebrain. In mice receiving three weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes by MRI ( p = 0.01). Furthermore, FUS/MB improved the mean survival from 21 to 31 days ( p < 0.0001). Our study demonstrates that FUS-mediated BBBD can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival. One Sentence Summary: FUS and microbubbles can increase the delivery of panobinostat to a patient-derived xenograft (PDX) orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

7.
Hosp Pharm ; 58(2): 205-211, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36890958

RESUMO

Background. Vasopressin is frequently utilized for a variety of shock states in critically ill patients. Short stability (≤24 hours) after intravenous admixture with current manufacturer labeling requires just in time preparation and may lead to delays in therapy and increased medication waste. We aimed to evaluate vasopressin stability in 0.9% sodium chloride stored in polyvinyl chloride bags and polypropylene syringes for up to 90 days. Additionally, we evaluated the impact of extended stability on the time to administration and cost savings from reduced medical waste at an academic medical center. Methods. Dilutions of vasopressin to concentrations of 0.4 and 1.0 unit/mL were performed under aseptic conditions. The bags and syringes were stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 2, 14, 30, 45, 60, and 90. Physical stability was performed by visual examination. The pH was assessed at each point and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of vasopressin was evaluated using liquid chromatography with tandem mass spectrometry. Samples were considered stable if there was <10% degradation of the initial concentration. Results. Vasopressin diluted to 0.4 and 1.0 unit/mL with 0.9% sodium chloride injection was physically stable throughout the study. No precipitation was observed. At days 2, 14, 30, 45, 60, and 90 all bags and syringes diluted to 0.4 units/mL had <10% degradation. Vasopressin diluted to 1 unit/mL and stored under refrigeration had <10% degradation at all measured days, but when stored under room temperature was found to have >10% degradation at day 30. Implementation of a batching process resulted in reduced waste ($185 300) and improved time to administration (26 vs 4 minutes). Conclusion. Vasopressin diluted to a concentration of 0.4 units/mL with 0.9% sodium chloride injection is stable for 90 days at room temperature and under refrigeration. When diluted to 1.0 unit/mL with 0.9% sodium chloride injection it is stable for 90 days under refrigeration. Use of extended stability and sterility testing to batch prepare infusions may lead to improved time to administration and cost savings from reduced medication waste.

8.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34832863

RESUMO

Over the last decade, therapies targeting immune checkpoints, such as programmed death-1 (PD-1), have revolutionized the field of cancer immunotherapy. However, low response rates and immune-related adverse events remain a major concern. Here, we report that epigallocatechin gallate (EGCG), the most abundant catechin in green tea, inhibits melanoma growth by modulating an immune response against tumors. In vitro experiments revealed that EGCG treatment inhibited interferon-gamma (IFN-γ)-induced PD-L1 and PD-L2 expression and JAK-STAT signaling. We confirmed that this effect was driven by inhibiting STAT1 gene expression and STAT1 phosphorylation, thereby downregulating the PD-L1/PD-L2 transcriptional regulator IRF1 in both human and mouse melanoma cells. Animal studies revealed that the in vivo tumor-inhibitory effect of EGCG was through CD8+ T cells and that the inhibitory effect of EGCG was comparable to anti-PD-1 therapy. However, their mechanisms of action were different. Dissimilar to anti-PD-1 treatment that blocks PD-1/PD-L1 interaction, EGCG inhibited JAK/STAT signaling and PD-L1 expression in tumor cells, leading to the re-activation of T cells. In summary, we demonstrate that EGCG enhances anti-tumor immune responses by inhibiting JAK-STAT signaling in melanoma. EGCG could be used as an alternative treatment strategy to target the PD-L1/PD-L2-PD-1 axis in cancers.

9.
J Cyst Fibros ; 20(5): 772-778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34030986

RESUMO

BACKGROUND: Treatment failure of Mycobacterium avium complex (MAC) pulmonary disease occurs in about 30% of people with cystic fibrosis (CF) and may be a result of abnormal drug concentrations. METHODS: Prospective, cross-over, single-dose PK study of 20 pancreatic insufficient individuals with CF and 10 healthy controls (HC). CF subjects received simultaneous doses of oral azithromycin, ethambutol, and rifampin in the fasting state and with food and pancreatic enzymes, separated by two weeks. HC received fasting doses only. A non-compartmental model was used to estimate PK parameters of drugs and metabolites. RESULTS: Azithromycin maximum concentration (Cmax ) was higher and rifampin Cmax was lower in fasting CF subjects compared to HC, while other PK measures, including those for ethambutol, were similar. Addition of food and enzymes did not improve the Cmax of the antimycobacterial drugs. Nineteen of 20 CF subjects had one or more abnormal Cmax z-scores in either the fasting or fed state (or both), when compared to HC. CONCLUSION: PK profiles of azithromycin and ethambutol were similar between CF and HC, except azithromycin Cmax was slightly higher in people with CF after a single dose. Rifampin PK parameters were altered in persons with CF. Addition of food and enzymes in CF subjects did not improve PK parameters. Standard dosing guidelines should be used as a starting point for people with CF initiating MAC therapy and therapeutic drug monitoring should be routinely performed to prevent the possibility of treatment failure due to abnormal drug concentrations. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02372383 Prior abstract publication: 1. Martiniano S, Wagner B, Brennan L, Wempe M, Anderson P, Nick J, Sagel S. Pharmacokinetics of oral MAC antibiotics in cystic fibrosis. Am J Resp Crit Care Med A4842-A4842, 2017. 2. Martiniano SL, Wagner BD, Brennan L, Wempe MF, Anderson PL, Nick JA, Sagel SD. Pharmacokinetics of oral MAC antibiotics in cystic fibrosis. J Cyst Fibros 16: S52-53, 2017.


Assuntos
Azitromicina/farmacocinética , Fibrose Cística/tratamento farmacológico , Etambutol/farmacocinética , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Rifampina/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibióticos Antituberculose/farmacocinética , Antituberculosos/administração & dosagem , Antituberculosos/farmacocinética , Azitromicina/administração & dosagem , Estudos Cross-Over , Fibrose Cística/microbiologia , Etambutol/administração & dosagem , Humanos , Complexo Mycobacterium avium , Estudos Prospectivos , Rifampina/administração & dosagem
10.
ACS Nano ; 15(3): 4678-4687, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33666411

RESUMO

The progressive accumulation of amyloid-beta (Aß) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aß levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3ß-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aß drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aß oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Receptores X do Fígado , Camundongos , Camundongos Transgênicos , Polímeros , Distribuição Tecidual
11.
Cardiol Young ; 31(9): 1393-1400, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33533327

RESUMO

BACKGROUND: Milrinone is a phosphodiesterase type 3 inhibitor that results in a positive inotropic effect in the heart through an increase in cyclic adenosine monophosphate. The purpose of this study was to evaluate circulating cyclic adenosine monophosphate and milrinone concentrations in milrinone treated paediatric patients undergoing congenital heart surgery. METHODS: Single-centre prospective observational pilot study from January 2015 to December 2017 including children aged birth to 18 years. Milrinone and circulating cyclic adenosine monophosphate concentrations were measured at four time points through the first post-operative day and compared between patients with and without low cardiac output syndrome, defined using clinical and laboratory criteria. RESULTS: Fifty patients were included. Nine (18%) developed low cardiac output syndrome. For all patients, 22% had single ventricle heart disease. The density and distribution of cyclic adenosine monophosphate concentrations varied between those with and without low cardiac output syndrome but were not significantly different. Milrinone concentrations increased in all patients. Paired t-tests demonstrated an increase in circulating cyclic adenosine monophosphate concentrations during the post-operative period among patients without low cardiac output syndrome. CONCLUSIONS: In this prospective observational study, circulating cyclic adenosine monophosphate concentrations increased in those without low cardiac output syndrome during the first 24 post-operative hours and milrinone concentrations increased in all patients. Further study of the utility of cyclic adenosine monophosphate concentrations in milrinone treated patients is necessary.


Assuntos
Cardiopatias Congênitas , Milrinona , Monofosfato de Adenosina , Baixo Débito Cardíaco/tratamento farmacológico , Cardiotônicos/uso terapêutico , Criança , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/cirurgia , Humanos , Estudos Prospectivos
12.
J Cancer Prev ; 26(4): 266-276, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35047453

RESUMO

Given the high rates of incidence and mortality associated with pancreatic cancer (PanC), there is a need to develop alternative strategies to target PanC. Recent studies have demonstrated that fruits of bitter melon (Momordica charantia) exhibit strong anticancer efficacy against PanC. However, the comparative effects of different bitter melon varieties have not been investigated. This has important implications, given that several bitter melon cultivars are geographically available but their differential effects are not known; and that on a global level, individuals could consume different bitter melon varieties sourced from different cultivars for anti-PanC benefits. Considering these shortcomings, in the present study, comparative pre-clinical anti-PanC studies have been conducted using lyophilized-juice and aqueous-methanolic extracts of the two most widely consumed but geographically diverse bitter melon varieties (Chinese [bitter melon juice; BMJ] and Indian [bitter melon extract; BME] variants). We observed that both BMJ and BME possess comparable efficacy against PanC growth and progression; specifically, these preparations have the potential to (a) inhibit PanC cell proliferation and induce cell death; (b) suppress PanC tumor growth, proliferation, and induce apoptosis; (c) restrict capillary tube formation by human umbilical vein endothelial cells, and decrease angiogenesis in PanC tumor xenografts. Thus, given the comparable pre-clinical anti-PanC efficacy of bitter melon cultivars, the geographical non-availability of a certain cultivar should not be a limiting factor in selecting a variant for moving forward for future clinical use/clinical trials either as a preventive or a therapeutic alternative for targeting PanC.

13.
Mol Carcinog ; 59(10): 1227-1240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816368

RESUMO

Chemoresistance to gemcitabine (GEM)-a frontline chemotherapeutic, resulting from its dysfunctional uptake and metabolism in cancer cells, is a major contributing factor for failed therapy in pancreatic cancer (PanC) patients. Therefore, there is an urgent need for agents that could reverse GEM resistance and allow continued chemosensitivity to the drug. We employed natural nontoxic agent (with anti-PanC potential) bitter melon juice (BMJ) and GEM to examine their combinatorial benefits against tumorigenesis of PanC patient-derived xenograft (PDX)-pancreatic ductal adenocarcinomas explants PDX272 (wild-type KRAS), PDX271 (mutant KRAS and SMAD4), and PDX266 (mutant KRAS). Anti-PanC efficacy of single agents vs combination in the three tumor explants, both at the end of active dosing regimen and following a drug-washout phase were compared. In animal studies, GEM alone treatment significantly inhibited PDX tumor growth, but effects were not sustained, as GEM-treated tumors exhibited regrowth posttreatment termination. However, combination-regimen displayed enhanced and sustained efficacy. Mechanistic assessments revealed that overcoming GEM resistance by coadministration with BMJ was possibly due to modulation of GEM transport/metabolism pathway molecules (ribonucleotide reductase regulatory subunit M1, human equilibrative nucleoside transporter 1, and deoxycytidine kinase). Study outcomes, highlighting significantly higher and sustained efficacy of GEM in combination with BMJ, make a compelling case for a clinical trial in PanC patients, wherein BMJ could be combined with GEM to target and overcome GEM resistance. In addition, given their specific effectiveness against KRAS-mutant tumors, this combination could be potentially beneficial to a broader PanC patient population.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Momordica charantia/química , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Desoxicitidina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
14.
Neurooncol Adv ; 2(1): vdaa021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642682

RESUMO

BACKGROUND: Hundreds of systemic chemotherapy trials in diffuse intrinsic pontine glioma (DIPG) have not improved survival, potentially due to lack of intratumoral penetration, which has not previously been assessed in humans. METHODS: We used gemcitabine as a model agent to assess DIPG intratumoral pharmacokinetics (PK) using mass spectrometry. RESULTS: In a phase 0 clinical trial of i.v. gemcitabine prior to biopsy in children newly diagnosed with DIPG by MRI, mean concentration in 4 biopsy cores in patient 1 (H3K27M diffuse midline glioma) was 7.65 µM. These compare favorably to levels for patient 2 (mean 3.85 µM, found to have an H3K27-wildtype low-grade glioma on histology), and from a similar study in adult glioblastoma (adjusted mean 3.48 µM). In orthotopic patient-derived xenograft (PDX) models of DIPG and H3K27M-wildtype pediatric glioblastoma, gemcitabine levels and clearance were similar in tumor, pons, and cortex and did not depend on H3K27 mutation status or tumor location. Normalized gemcitabine levels were similar in patient 1 and the DIPG PDX. CONCLUSIONS: These findings, while limited to one agent, provide preliminary evidence for the hypotheses that lack of intratumoral penetration is not why systemic chemotherapy has failed in DIPG, and orthotopic PDX models can adequately model intratumoral PK in human DIPG.

15.
J Am Heart Assoc ; 9(12): e015222, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32515247

RESUMO

BACKGROUND Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy trans-2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury. METHODS AND RESULTS We report here that ß-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury. Cardiospecific overexpression of ATPGD1 increased myocardial histidyl dipeptides levels and protected the heart from I/R injury. Isolated cardiac myocytes from ATPGD1-transgenic hearts were protected against hypoxia reoxygenation injury. The overexpression of ATPGD1 prevented the accumulation of acrolein and 4-hydroxy trans-2-nonenal-protein adducts in ischemic hearts and delayed acrolein or 4-hydroxy trans-2-nonenal-induced hypercontracture in isolated cardiac myocytes. Changes in the levels of ATP, high-energy phosphates, intracellular pH, and glycolysis during low-flow ischemia in the wild-type mice hearts were attenuated in the ATPGD1-transgenic hearts. Two natural dipeptide analogs (anserine and balenine) that can either quench aldehydes or buffer intracellular pH, but not both, failed to protect against I/R injury. CONCLUSIONS Either exogenous administration or enhanced endogenous formation of histidyl dipeptides prevents I/R injury by attenuating changes in intracellular pH and preventing the accumulation of lipid peroxidation derived aldehydes.


Assuntos
Carnosina/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Peptídeo Sintases/metabolismo , Acroleína/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeídos/metabolismo , Animais , Carnosina/farmacologia , Hipóxia Celular , Modelos Animais de Doenças , Metabolismo Energético , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeo Sintases/genética , Regulação para Cima , beta-Alanina/farmacologia
16.
Front Physiol ; 10: 751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312142

RESUMO

High (millimolar) concentrations of the histidine containing dipeptide - carnosine (ß-alanine-L-histidine) are present in the skeletal muscle. The dipeptide has been shown to buffer intracellular pH, chelate transition metals, and scavenge lipid peroxidation products; however, its role in protecting against tissue injury remains unclear. In this study, we tested the hypothesis that carnosine protects against post ischemia by augmenting HIF-1α angiogenic signaling by Fe2+ chelation. We found that wild type (WT) C57BL/6 mice, subjected to hind limb ischemia (HLI) and supplemented with carnosine (1g/L) in drinking water, had improved blood flow recovery and limb function, enhanced revascularization and regeneration of myocytes compared with HLI mice placed on water alone. Carnosine supplementation enhanced the bioavailability of carnosine in the ischemic limb, which was accompanied by increased expression of proton-coupled oligopeptide transporters. Consistent with our hypothesis, carnosine supplementation augmented HIF-1α and VEGF expression in the ischemic limb and the mobilization of proangiogenic Flk-1+/Sca-1+ cells into circulation. Pretreatment of murine myoblast (C2C12) cells with octyl-D-carnosine or carnosine enhanced HIF-1α protein expression, VEGF mRNA levels and VEGF release under hypoxic conditions. Similarly pretreatment of WT C57/Bl6 mice with carnosine showed enhanced blood flow in the ischemic limb following HLI surgery. In contrast, pretreatment of hypoxic C2C12 cells with methylcarcinine, a carnosine analog, lacking Fe2+ chelating capacity, had no effect on HIF-1α levels and VEGF release. Collectively, these data suggest that carnosine promotes post ischemic revascularization via augmentation of pro-angiogenic HIF-1α/VEGF signaling, possibly by Fe2+ chelation.

17.
Carcinogenesis ; 40(9): 1164-1176, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31194859

RESUMO

The established role of bitter melon juice (BMJ), a natural product, in activating master metabolic regulator adenosine monophosphate-activated protein kinase in pancreatic cancer (PanC) cells served as a basis for pursuing deeper investigation into the underlying metabolic alterations leading to BMJ efficacy in PanC. We investigated the comparative metabolic profiles of PanC cells with differential KRAS mutational status on BMJ exposure. Specifically, we employed nuclear magnetic resonance (NMR) metabolomics and in vivo imaging platforms to understand the relevance of altered metabolism in PanC management by BMJ. Multinuclear NMR metabolomics was performed, as a function of time, post-BMJ treatment followed by partial least square discriminant analysis assessments on the quantitative metabolic data sets to visualize the treatment group clustering; altered glucose uptake, lactate export and energy state were identified as the key components responsible for cell death induction. We next employed PANC1 xenograft model for assessing in vivo BMJ efficacy against PanC. Positron emission tomography ([18FDG]-PET) and magnetic resonance imaging on PANC1 tumor-bearing animals reiterated the in vitro results, with BMJ-associated significant changes in tumor volumes, tumor cellularity and glucose uptake. Additional studies in BMJ-treated PanC cells and xenografts displayed a strong decrease in the expression of glucose and lactate transporters GLUT1 and MCT4, respectively, supporting their role in metabolic changes by BMJ. Collectively, these results highlight BMJ-induced modification in PanC metabolomics phenotype and establish primarily lactate efflux and glucose metabolism, specifically GLUT1 and MCT4 transporters, as the potential metabolic targets underlying BMJ efficacy in PanC.

18.
J Inherit Metab Dis ; 42(3): 424-437, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30873612

RESUMO

STUDY OBJECTIVE: A phase 1/2 clinical trial was performed in individuals with cystathionine ß synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS: Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 µM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS: Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 µM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 µM, pertinent to endothelial function. CONCLUSION: Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.


Assuntos
Biomarcadores/metabolismo , Cistationina beta-Sintase/metabolismo , Homocistinúria/tratamento farmacológico , Taurina/farmacocinética , Taurina/uso terapêutico , Adolescente , Adulto , Artéria Braquial/efeitos dos fármacos , Criança , Cistationina beta-Sintase/deficiência , Feminino , Homocisteína/metabolismo , Homocistinúria/genética , Humanos , Inflamação/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estados Unidos , Adulto Jovem
19.
Mol Carcinog ; 58(7): 1105-1117, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30828884

RESUMO

The present study aimed to determine whether grape seed extract (GSE) procyanidin mix, and its active constituent procyanidin B2 3,3″-di-O-gallate (B2G2) have the potential to target cancer stem cells (CSCs) in prostate cancer (PCa). The CSC populations were isolated and purified based on CD44+ -α2ß1high surface markers in PCa cell lines LNCaP, C4-2B, 22Rv1, PC3, and DU145, and then subjected to prostasphere formation assays in the absence or presence of GSE or B2G2. Results indicated that at lower doses (<15 µg) , the GSE procyanidin mix produced activity in unsorted prostate cancer antigen (PCA) cells, but not in sorted; however, multiple treatments with low dose GSE over a course of time inhibited sphere formation by sorted PCA CSCs. Importantly, B2G2 demonstrated significant potential to target both unsorted and sorted CSCs at lower doses. As formation of spheroids, under specific in vitro conditions, is a measure of stemness, these results indicated the potential of both GSE and B2G2 to target the self-renewal of CSC in PCa cell lines, though B2G2 was more potent in its efficacy. Subsequent mechanistic studies revealed that both GSE procyanidins and B2G2 strongly decreased the constitutive as well as Jagged1 (Notch1 ligand)-induced activated Notch1 pathway. In totality, these in vitro studies warrant extensive dose-profiling-based assessments in vivo settings to conclusively determine the impact on CSC pool kinetics on the efficacy of both GSE and B2G2 to target PCa growth as well as tumor relapse.


Assuntos
Antocianinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Biflavonoides/farmacologia , Catequina/farmacologia , Extrato de Sementes de Uva/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proantocianidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteína Jagged-1/metabolismo , Masculino , Células-Tronco Neoplásicas/patologia , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/patologia , Receptor Notch1/metabolismo , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas
20.
J Cell Mol Med ; 23(4): 2711-2718, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30784173

RESUMO

Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo- and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L-type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1-specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD-MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long-term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.


Assuntos
Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/genética , Neurônios/efeitos dos fármacos , Tirosina/análogos & derivados , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Embrião de Mamíferos , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Especificidade de Órgãos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Tirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA