Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Biophys Chem ; 306: 107171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194817

RESUMO

Abnormal aggregation and fibrillogenesis of amyloid-ß protein (Aß) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aß fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aß aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aß1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-ß-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aß1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aß1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aß1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aß, and promote further exploration of the therapeutic strategy against AD.


Assuntos
Doença de Alzheimer , Glucosídeos , Luteolina , Fragmentos de Peptídeos , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo
2.
Biochem Pharmacol ; 220: 115968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104671

RESUMO

Ischemic stroke (IS) can cause severe harm, inducing oxidative stress, inflammation, and pyroptotic death. IS treatment efficacy remains limited, and microglia are important regulators of IS-related blood-brain barrier (BBB) damage. It is thus vital that new therapeutic agents capable of targeting microglia be identified to treat IS-related damage to the BBB. Acteoside (ACT), which is a compound derived from Cistanche tubulosa (Schenk) Wight., offers promising bioactivity, but its ability to protect against central nervous system injury remains to be documented. To clarify the protective benefits and mechanisms through which ACT can protect against damage to the BBB, a rat middle cerebral artery occlusion (MCAO) model system was herein employed. These in vivo analyses demonstrated that ACT was able to significantly reduce cerebral infarct size while improving their neurological scores and altering neurotrophic and inflammatory factor release. RNA sequencing and molecular docking studies highlighted the ability of ACT to exert its protective benefits via the HMGB1/TLR4/NLRP3 axis. Western immunoblotting and immunofluorescent staining for tight junction proteins additionally confirmed the ability of ACT to preserve BBB integrity. The underlying mechanisms were then explored with an oxygen-glucose deprivation (OGD) model in vitro with BV2 cells. This strategy thus confirmed that the ability of ACT to suppress microglial inflammatory and pyroptotic activity was HMGB1/TLR4/NLRP3 pathway-dependent. These data thus offer novel evidence that ACT can protect against IS-related damage to the BBB through the abrogation of inflammatory and pyroptotic activity, underscoring its promise as a novel lead compound for the therapeutic treatment of IS.


Assuntos
Isquemia Encefálica , Glucosídeos , Proteína HMGB1 , AVC Isquêmico , Polifenóis , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , AVC Isquêmico/tratamento farmacológico , Proteína HMGB1/metabolismo , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Acidente Vascular Cerebral/tratamento farmacológico
3.
Phytother Res ; 37(12): 5509-5528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641491

RESUMO

The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Fitoterapia
4.
Oxid Med Cell Longev ; 2022: 6481192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506934

RESUMO

Formononetin (FN), an isoflavone compound mainly isolated from soy and red clover, had showed its anti-inflammation, antioxidative effects in some degenerative diseases and cholestasis. However, the role of FN in protecting ischemia/reperfusion- (I/R-) induced liver injury and the possible mechanism were unclear. In this study, effects of FN on liver injury were investigated in a rat hepatic I/R model; further, mitophagy-related proteins were measured by immunoblotting or immunofluorescence. The possible roles of PHB2 and PINK1 in regulating mitophagy by FN were verified using adeno-associated virus knockdown. The results showed that FN had protective effects against hepatic I/R injury through regulating PINK1/Parkin-regulated mitophagy. Further, we found that FN inhibited PARL expression and prevented PGAM5 cropped by increasing the expression of PHB2. The knockdown of PINK1 or PHB2 both abolished the protective effects of FN. Taken together, our findings indicated that the isoflavone compound FN promoted PHB2/PINK1/Parkin-mediated mitophagy pathway to protect liver from I/R-induced injury. These results provided novel insights into the potential prevention strategies of FN and its underlying mechanisms.


Assuntos
Mitofagia , Proteínas Quinases , Ratos , Animais , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
5.
Arch Osteoporos ; 17(1): 84, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715524

RESUMO

Denosumab is a newly approved treatment for osteoporosis in China. However, the clinical safety and advantages of denosumab have not been much established. The current study evaluates the real-world safety of denosumab versus zoledronic acid in treating cancer-free adults aged 50 years or older with osteoporosis to provide clinical settings guidelines. PURPOSE: A head-to-head comparison of the safety profiles between denosumab (60 mg subcutaneously every 6 months) and zoledronic acid (5 mg, intravenously yearly) was performed in cancer-free adults aged 50 years or older with osteoporosis. METHODS: MEDLINE, EMBASE, and Cochrane Library databases were searched for cohort studies comparing the safety of denosumab and zoledronic acid in cancer-free adults aged 50 years or older with osteoporosis till December 2021. The outcomes included the risk of fracture and other severe adverse events. Based on the Cochrane Handbook for Systematic Reviews of Interventions 5.0.2, we identified the eligible studies. RESULTS: Three cohort studies having 38,845 cancer-free adults aged 50 years or older were included in the study. The results showed that denosumab was not superior to zoledronic acid in reducing fracture risk [RR (95% CI): 1.05 (0.90, 1.23), P = 0.52]. However, denosumab had a low risk of composite cardiovascular disease [RR (95% CI): 0.82 (0.70, 0.96), P = 0.01]. There were no significant differences between the hazards of serious infection, and total adverse events (P > 0.05). CONCLUSION: The present meta-analysis demonstrated that for cancer-free adults aged 50 years or older with osteoporosis, denosumab was as safe as zoledronic acid for the risk of drug-induced fractures. However, denosumab had a lower incidence of composite cardiovascular disease, and may be a better option for the population with cardiovascular disease. Nonetheless, due to limitations like a short-term follow-up, gender, and incomplete types of adverse effects, more randomized controlled trials (RCTs) are required to further verify this conclusion.


Assuntos
Conservadores da Densidade Óssea , Doenças Cardiovasculares , Fraturas Ósseas , Osteoporose , Idoso , Conservadores da Densidade Óssea/efeitos adversos , Estudos de Coortes , Denosumab/efeitos adversos , Difosfonatos/efeitos adversos , Fraturas Ósseas/tratamento farmacológico , Humanos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Revisões Sistemáticas como Assunto , Ácido Zoledrônico/efeitos adversos
6.
J Ethnopharmacol ; 283: 114532, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34416296

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qufeng Zhitong capsule (QFZTC) is a traditional Chinese medicine (TCM) clinically used for treating pain. However, the active ingredients of QFZTC and its pharmacological mechanism in the treatment of neuropathic pain (NP) remain unclear. AIM OF THE STUDY: We aimed to identify the active ingredients of QFZTC and reveal its target genes and underlying mechanism of action in NP. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the active ingredients of QFZTC. Network pharmacology analysis was conducted to determine the core targets and pathway enrichment of QFZTC. An NP mice model was established through chronic compression injury (CCI) surgery of the sciatic nerve, while von Frey instrumentation and a thermal stimulator were employed to measure the sensitivity of mice to mechanical and thermal stimuli. Immunofluorescence was used to observe the expression of TLR4 and p-P65 in microglia. Western blotting was used to detect the levels of protein expression of Iba-1, TLR4, MyD88, P65, p-P65, and c-Fos, while ELISA kits were used to detect the release of TNF-α, IL-6, and IL-1ß. RESULTS: Seven active ingredients were identified in QFZTC: gallic acid, loganylic acid, syringin, corilagin, loganin, ellagic acid, and osthole. Network analysis identified TLR4, TNF, IL6, IL1ß, and c-Fos as core targets, and Toll-like receptors and NF-κB as core signaling pathways. Treatment with QFZTC significantly relieved mechanical allodynia and thermal hyperalgesia in CCI mice models. CCI induced an increase in the expression of TLR4 and p-P65 in microglia, whereas QFZTC dose-dependently reduced the expression of Iba-1, TLR4, MyD88, and p-P65 in the spinal cord. QFZTC inhibited the expression of the c-Fos pain marker and reduced the expression of the TNF-α, IL-6, and IL-1ß inflammatory factors. CONCLUSION: We combined the active ingredients of QFZTC with network pharmacology research to clarify its biological mechanism in the treatment of NP. We demonstrated that QFZTC reduced NP in mice probably through regulating the spinal microglia via the TLR4/MyD88/NF-κB signaling pathway. Hence, QFZTC could be regarded as a potential drug for relieving NP.


Assuntos
Medicamentos de Ervas Chinesas , Hiperalgesia , Neuralgia , Animais , Camundongos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Farmacologia em Rede , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
7.
J Mol Histol ; 52(3): 449-459, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755822

RESUMO

Currently, the excessive activation of N-methyl-D-aspartate receptors (NMDARs) is considered to be a crucial mechanism of brain injury. Lycium barbarum A (LyA) is a dimer of phenol amides isolated from the fruit of Lycium barbarum. Our previous studies have shown that LyA has potential antioxidant activity. This study aimed to explore the neuroprotective effect of LyA and its potential mechanism. Firstly, the molecular docking was used to preliminarily explore the potential function of LyA to block NMDAR. Then, the ability of LyA was further verified by NMDA-induced human neuroblastoma SH-SY5Y cells in vivo. Treatment with LyA significantly attenuated NMDA-induced neuronal insults by increasing cell viability, reducing lactate dehydrogenase (LDH) release, and increasing cell survival. Meanwhile, LyA significantly reversed the increase in intracellular calcium and in ROS production induced by NMDA. Finally, the western blot indicated that LyA could suppress the Ca2+ influx and increase the p-NR2B, p-CaMKII, p-JNK, and p-p38 level induced by NMDA. These above findings provide evidence that LyA protect against brain injury, and restraining NMDARs and suppressing mitochondrial oxidative stress and inhibiting cell apoptosis may be involved in the protective mechanism.


Assuntos
Amidas/farmacologia , Dimerização , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Fenóis/farmacologia , Amidas/química , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fenóis/química , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Chem Biol Interact ; 331: 109246, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877639

RESUMO

Colorectal cancer (CRC) represents one of the commonest malignancies around the world. PP9, a natural steroidal saponin, was firstly isolated from the rhizomes of Paris polyphylla var. latifolia. However, the therapeutic effects of PP9 on CRC and the underlying molecular mechanism remain undefined. Here, we demonstrated that treatment with PP9 time- and dose-dependently inhibited HT-29 and HCT116 cells without significantly inhibiting normal NCM460 cells. Furthermore, our results indicated that PP9 effectively induced G2/M phase arrest by upregulating p21 and suppressing cdc25C, Cyclin B1 and cdc2. Meanwhile, PP9 upregulated cleaved Caspase 3, cleaved Caspase 9 and cleaved PARP and Bax, while downregulating Bcl-2 to stimulate cell apoptosis. Mechanistically, PP9-suppressed PI3K/Akt/GSK3ß signaling, while the PI3K inhibitor LY294002 augmented PP9-mediated apoptosis, G2/M arrest and effects on PI3K/Akt/GSK3ß related proteins. Finally, we showed that PP9 (10 mg/kg) significantly reduced tumor growth in nude mouse CRC xenografts, more potently than 5-Fu (20 mg/kg). Jointly, these data firstly demonstrated that PP9 promotes G2/M arrest and apoptotic death in CRC cells through PI3K/Akt/GSK3ß signaling suppression, suggesting that PP9 could be considered a new and promising candidate for CRC therapy.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cromonas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Liliales/química , Liliales/metabolismo , Masculino , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saponinas/uso terapêutico , Transplante Heterólogo
9.
Drug Des Devel Ther ; 14: 2355-2370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606603

RESUMO

AIM: The aim of this study was to develop a GX1-modified nanostructured lipid carrier (NLCs) and to evaluate its ability to improve the anti-gastric cancer tumor effects of paclitaxel (PTX). MAIN METHODS: The GX1-modified NLCs were synthesized and loaded with PTX (GX1-PTX-NLCs) by emulsion solvent evaporation technique. The anti-tumor activity and pharmacodynamics were then evaluated by in vitro cell studies and animal experiments. KEY FINDINGS: The GX1-modified NLCs were successfully synthesized and confirmed by 1H NMR and MALDI-TOF-MS. PTX-loaded NLCs produced particles with average size distribution less than or equal to 222 nm and good drug loading and entrapment efficiency. In vitro studies demonstrated that GX1-PTX-NLCs had a more obvious inhibitory effect on Co-HUVEC cells than PTX and unmodified PTX-NLCs. The cellular uptake results also showed that GX1-PTX-NLCs were largely concentrated in Co-HUVEC cells, and the uptake rates of GX1-PTX-NLCs in Co-HUVEC were higher than those of the free drug and the PTX-NLC. In vivo studies demonstrated that GX1-PTX-NLCs possess strong anti-tumor effect and showed higher tumor growth inhibition and lower toxicity in nude mice. SIGNIFICANCE: These results suggest that GX1-modified NLCs enhanced the anti-tumor activity of PTX and reduced its toxicity effectively. GX1-PTX-NLCs may be considered as a potent drug delivery system for therapy of gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Desenho de Fármacos , Lipídeos/química , Nanopartículas/química , Oligopeptídeos/farmacologia , Paclitaxel/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Cápsulas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Oligopeptídeos/síntese química , Oligopeptídeos/química , Paclitaxel/síntese química , Paclitaxel/química , Neoplasias Gástricas/patologia
10.
Front Pharmacol ; 11: 694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477148

RESUMO

Resveratrol is a natural polyphenol in lots of foods and traditional Chinese medicines, which has shown promising treatment for neurodegenerative diseases (NDs). However, the molecular mechanisms of its action have not been systematically studied yet. In order to elucidate the network pharmacological prospective effects of resveratrol on NDs, we assessed of pharmacokinetics (PK) properties of resveratrol, studied target prediction and network analysis, and discussed interacting pathways using a network pharmacology method. Main PK properties of resveratrol were acquired. A total of 13,612 genes related to NDs, and 138 overlapping genes were determined through matching the 175 potential targets of resveratrol with disease-associated genes. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to obtain more in-depth understanding of resveratrol on NDs. Accordingly, nodes with high degrees were obtained according using a PPI network, and AKT1, TP53, IL6, CASP3, VEGFA, TNF, MYC, MAPK3, MAPK8, and ALB were identified as hub target genes, which showed better affinity with resveratrol in silico studies. In addition, our experimental results demonstrated that resveratrol markedly enhanced the decreased levels of Bcl-2 and significantly reduced the increased expression of Bax and Caspase-3 in hippocampal neurons induced by glutamate exposure. Western blot results confirmed that resveratrol inhibited glutamate-induced apoptosis of hippocampal neurons partly by regulating the PI3K/AKT/mTOR pathway. In conclusion, we found that resveratrol could target multiple pathways forming a systematic network with pharmacological effects.

11.
Biochem Pharmacol ; 180: 114079, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511988

RESUMO

Renal interstitial fibrosis (RIF) is a major pathological feature of chronic kidney disease at middle and end stages. Chrysophanol (CP), 1,8-dihydroxy-3-methyl-9,10-anthraquinone, is an anthraquinone isolated from Rheum palmatum L. with a variety of pharmacological activities including the suppression of RIF. However, the effect of CP on renal fibrosis and its potential mechanism have not been elucidated. We conducted a comprehensive study by determining the expression levels of fibrotic markers and proteins including TGF-ß1, α-SMA, and Smad3 related to transforming growth factor-beta/Smad (TGF-ß/Smad) pathway in unilateral ureteral obstruction (UUO) mice and TGF-ß1-stimulated HK-2 cells with the treatment of CP using western blotting and RT-qPCR analyses. Using small interfering RNA and co-immunoprecipitation, we evaluated the influences of CP on the interactions between Smad3 and Smad7 proteins and also on TGF-ß RI and TGF-ßR II. We found that CP administration significantly ameliorated UUO-induced kidney damage by reversing abnormal serum and urine biochemical parameters and decreasing the production of fibrotic markers including collagen I, collagen III, fibronectin, and α-SMA. Our results showed that TGF-ß1 and phospho-Smad3 (p-Smad3) expression was significantly down-regulated and Smad7 expression was up-regulated by CP in UUO mice compared to the model group; however, the expression of Smad2, Smad4, and TGF-ß receptors was not affected. Furthermore, CP modulated these fibrotic markers as well as p-Smad3 and Smad7 in TGF-ß1-induced HK-2 cells. The inhibitory effect of CP was markedly reduced in TGF-ß1-treated HK-2 cells transfected with Smad3 siRNA. Additionally, co-immunoprecipitation analysis indicated that CP blocked the interaction between Smad3 and TGF-ß receptor I to suppress p-Smad3 expression. These findings demonstrated that CP alleviated RIF by inhibiting Smad3 phosphorylation, which provides a molecular basis for a new drug candidate for the treatment of RIF.


Assuntos
Antraquinonas/uso terapêutico , Rim , Nefrite Intersticial/prevenção & controle , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antraquinonas/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Transdução de Sinais
12.
Eur J Pharmacol ; 883: 173167, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485245

RESUMO

Abnormal vitamin A (retinol) metabolism plays an important role in the occurrence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this study, NAFLD and NASH models were established to investigate the effects of food additives glycyrrhizic acid (GL) on retinol metabolism in NAFLD/NASH mice. Potential targets of GL and its active metabolite glycyrrhetinic acid (GA) were analyzed by RNA sequence, bioinformatics, and molecular docking analyses. Gene transfection and enzymatic kinetics were used to identify the target of GL. The results showed that GL could resolve the fatty and inflammatory lesions in the mouse liver, thereby improving the disorder of retinol metabolism. RNA sequence analysis of model mice liver revealed significant changes in AKR1B10 (retinol metabolic enzymes). Bioinformatics and molecular docking analyses showed that AKR1B10 is a potential target of GA but not GL. GA could inhibit AKR1B10 activity, which then affects retinol metabolism, whereas GL only had the same effect after hydrolysis into GA. In AKR1B10-KO hepatocytes, GA, GL, and hydrolysates of GL had no regulatory effect on retinol metabolism. Therefore, GA, the active metabolite of GL, as a novel AKR1B10 inhibitor, could promote retinoic acid synthesis. GL restored the balance of retinol metabolism in NAFLD/NASH mice by metabolizing to GA.


Assuntos
Aldo-Ceto Redutases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/farmacologia , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Vitamina A/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácido Glicirretínico/metabolismo , Ácido Glicirrízico/metabolismo , Células Hep G2 , Humanos , Hidrólise , Cinética , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia
13.
Aging (Albany NY) ; 12(9): 7945-7962, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365053

RESUMO

There are many reports about natural products relieving neuralgia. Osthole is the main component of Angelica biserrata Yuan et Shan, a natural product that treats rheumatism through the elimination of inflammation and the alleviation of pain that has a long history in the clinic. The analgesic mechanism of osthole is complicated and confusing. Astrocytes have attracted increasing attention from pain researchers. Inhibitors targeting astrocytes are thought to be promising treatments for neuropathic pain. Whether osthole can alleviate neuropathic pain through astrocytes has not been elucidated in detail. In this study, CCI surgery was used to establish the neuropathic pain model in mice. The CCI mice were treated with osthole (5, 10, or 20 mg/kg/day) for 14 days in vivo. Mechanical allodynia and heat hyperalgesia were measured to evaluate the therapeutic effect of osthole. In mechanism research, the activation of astrocytes; the protein expression of P2Y1R and p-JNK in astrocytes; the release of inflammatory factors; the variations in mEPSPs and eEPSPs; and the levels of GluA1, GluN2B, p-ERK, p-CREB and c-Fos in neurons were observed. The P2Y1R inhibitor MRS2179 and the p-JNK inhibitor SP600125 were used to demonstrate how osthole works in neuropathic pain. In addition, astrocytes and neurons were used to estimate the direct effect of osthole on astrocyte-neuron interactions and signal transmission in vitro. Our findings suggest that osthole treatment obviously relieved mechanical allodynia and heat hyperalgesia in CCI mice. P2Y1R is involved in CCI-induced pain hypersensitivity, and P2Y1R is required for osthole-induced p-JNK downregulation in the spinal cord. Osthole inhibited astrocyte activation and reduced inflammatory factor expression. After osthole treatment, mEPSP frequency and eEPSP amplitude were decreased in spinal lamina I-II neurons. Downstream signaling molecules such as pGluA1, pGluN2B, p-ERK, p-CREB and c-Fos were also reduced very quickly in osthole-treated neuralgic mice. Our conclusion is that osthole alleviates neuropathic pain in mice via the P2Y1-receptor-dependent JNK signaling pathway in spinal astrocytes, and osthole could be considered a potential pharmacotherapy to alleviate neuropathic pain.


Assuntos
Cumarínicos/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Neuralgia/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Medula Espinal/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Neuralgia/metabolismo , Transdução de Sinais
14.
Brain Res Bull ; 160: 141-149, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32389388

RESUMO

Sleep deprivation (SD) can induce cognitive and memory impairments. This impairment is in part due to oxidative stress damage in the hippocampus region of the brain. Corilagin (CL), a polyphenol belonging to the tannin family and extracted from Terminalia chebula and Phyllanthus emblica, shows strong antioxidant and neuroprotective effects. NF-E2-related factor (Nrf2)/heme oxygenase-1 (HO-1) and NADPH oxidase (NOX) are critical targets involved in cellular defense mechanisms against oxidative injury. Thus, we hypothesized that CL could be a preventive treatment for SD-induced memory impairments by inhibiting NOX2 and activating Nrf2. The results from behavioral tests showed that administration of CL resulted in significantly better performance compared to the SD mice. CL significantly normalized the elevated MDA level and the reduced activity of GPx and SOD (P <0.05, p<0.01) caused by SD. In hippocampal tissues, CL effectively activated Nrf2/HO-1 signaling and downregulated NOX2 protein expression compared with SD (P <0.05, P <0.01). Meanwhile, in vitro findings showed that knockdown of Nrf2 blocked the protective effect of CL versus Glu-induced toxicity, while the effect of CL was enhanced in NOX2 siRNA-transfected neurons. Overall, these findings provided evidence that CL ameliorates SD-induced memory impairments in mice by inhibiting NOX2 and activating Nrf2.


Assuntos
Glucosídeos/uso terapêutico , Taninos Hidrolisáveis/uso terapêutico , Transtornos da Memória/metabolismo , NADPH Oxidase 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Privação do Sono/metabolismo , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/agonistas , Privação do Sono/tratamento farmacológico
15.
Eur J Pharmacol ; 871: 172916, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31930970

RESUMO

Macrophages play important roles in the healing and remodeling of cardiac tissues after myocardial ischemia/reperfusion (MI/R) injury. Here we investigated the potential effects of salvianolic acid B (SalB), one of the abundant and bioactive compounds extracted from Chinese herb Salvia Miltiorrhiza (Danshen), on macrophage-mediated inflammation after MI/R and the underlying mechanisms. In primary cultured bone marrow-derived macrophages (BMDMs), SalB attenuated lipopolysaccharide (LPS)-induced M1 biomarkers (IL-6, iNOS, CCL2 and TNF-α) mRNA expression in a concentration-dependent manner. In contrast, M2 biomarkers (Arg1, Clec10a and Mrc) mRNA levels following interleukinin-4 (IL-4) stimulation were significantly upregulated by SalB. In addition, LPS stimulation potently induced transcriptional upregulation of RagD, an important activation factor of mammalian target of rapamycin complex 1 (mTORC1). Interestingly, SalB inhibited RagD upregulation and mTORC1 activation, decreased glycolysis, and reduced inflammatory cytokine production in LPS-stimulated macrophages, all of which were blunted in RagD knockdown macrophages. In mice subjected to MI/R, SalB treatment decreased cardiac M1-macrophages and increased M2-macrophages at 3 days post-MI/R, followed by decreased collagen deposition and ameliorated cardiac dysfunction at 7 days post-MI/R. Collectively, our data have shown that SalB decreases M1-polarized macrophages in MI/R hearts via inhibiting mTORC1-dependent glycolysis, which might contribute to alleviated inflammation and improved cardiac dysfunction afforded by SalB after MI/R.


Assuntos
Benzofuranos/farmacologia , Coração/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Glicólise/efeitos dos fármacos , Coração/fisiopatologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Traumatismo por Reperfusão Miocárdica/fisiopatologia
16.
Cancer Prev Res (Phila) ; 13(1): 117-126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619442

RESUMO

The Chinese natural product, berberine, has biological properties that support its potential efficacy as a colon cancer prevention agent. Its longstanding use in China to treat gastrointestinal tract and rheumatologic disorders is generally regarded as safe, supporting initial investigations in an at-risk population, such as individuals with ulcerative colitis. However, the safety of berberine in this population is not established. Individuals living in China with biopsy-proven ulcerative colitis, ≤grade 2 dysplasia, and with a ulcerative colitis disease activity index (UCDAI) score ≤1 on mesalamine, were randomized 3:1 in a double-blind phase I trial to berberine 900 mg/day or placebo for 3 months, with the primary objective of assessing safety. Blood samples and biopsies of the colorectum, from prespecified locations, were collected prior to and following therapy. Secondary endpoints included changes in UCDAI score, and in tissue and plasma markers of inflammation. Of toxicities at least possibly related, one episode of grade 3 elevation in transaminases and one episode of grade 1 nausea were observed among 12 individuals on berberine, and none were observed among 4 on placebo. The mean plasma berberine concentration was 3.5 nmol/L after berberine treatment, significantly higher than 0.5 nmol/L with placebo. Berberine significantly decreased the Geboes grade in colonic tissue, but had a nonsignificant effect on other tissue or blood biomarkers related to cell growth and inflammation. The combination of berberine and mesalamine is well tolerated in Chinese with ulcerative colitis and may enhance mesalamine's anti-inflammatory effects in colonic tissue.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Berberina/efeitos adversos , Colite Ulcerativa/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Administração Oral , Adulto , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Berberina/administração & dosagem , Berberina/farmacocinética , Biópsia , China , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Método Duplo-Cego , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Mesalamina/administração & dosagem , Mesalamina/efeitos adversos , Mesalamina/farmacocinética , Pessoa de Meia-Idade , Estudos Prospectivos , Reto/efeitos dos fármacos , Reto/imunologia , Reto/patologia , Índice de Gravidade de Doença , Distribuição Tecidual , Adulto Jovem
17.
Aging (Albany NY) ; 11(24): 12361-12374, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31881005

RESUMO

Lyciumamide A (LyA), a dimer of phenolic amide isolated from the fruits of Lycium barbarum, has been confirmed to possess potent antioxidant activity. This study was aimed to investigate the neuroprotection and molecular mechanisms of LyA against cerebral ischemia/reperfusion (I/R) injury via improving antioxidant activity. The model of middle cerebral artery occlusion (MCAO) and SH-SY5Y cells induced by oxygen and glucose deprivation (OGD) were adopted to verify the neuroprotective effects and the potential pharmacology mechanisms of LyA in vivo and in vitro. In MCAO model, treatment with LyA significantly improved neurologic score, reduced infarct volume, and relieved oxidative stress injury at 48 h after reperfusion. Meanwhile, LyA markedly increased the transcription Nrf2 and HO-1 expressions in the ischemic cerebral cortex. In vitro results showed that LyA protected differentiated SH-SY5Y cells against OGD-induced injury. LyA significantly decreased the expression of caspase-3 and the Bax/Bcl-2 ratio. But knockdown of Nrf2 or HO-1 attenuated the protective effect of LyA. Similarly, knockdown of protein kinase Cε (PKCε) inhibited LyA-induced Nrf2/HO-1 activation, and abated its protective effects. In conclusion, this study firstly demonstrated that LyA protects against cerebral I/R injury, ameliorates oxidative damage and neuronal apoptosis, partly via activation of PKCε/Nrf2/HO-1 pathway.


Assuntos
Amidas/química , Amidas/farmacologia , Lycium/química , Fator 2 Relacionado a NF-E2/metabolismo , Fenóis/química , Fenóis/farmacologia , Proteína Quinase C-épsilon/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Frutas , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Fator 2 Relacionado a NF-E2/genética , Neuroblastoma , Fármacos Neuroprotetores/farmacologia , Proteína Quinase C-épsilon/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Aging (Albany NY) ; 11(21): 9424-9441, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31697645

RESUMO

Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 ß/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3ß/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3ß and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3ß and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3ß/Nrf2 pathway.


Assuntos
Benzaldeídos/farmacologia , Catecóis/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzaldeídos/uso terapêutico , Catecóis/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/metabolismo , Fitoterapia , Salvia miltiorrhiza , Transdução de Sinais/efeitos dos fármacos
19.
Oxid Med Cell Longev ; 2019: 7609765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214282

RESUMO

BACKGROUND: Saponin from Aralia taibaiensis (sAT) showed excellent antioxidative effects in several models; however, its effects on brain cells were unknown to us. The present study was designed to evaluate the protective effects of sAT on ischemia/reperfusion- (I/R-) induced injury and clarify its mechanisms. METHODS: In vitro, HT22 cells were pretreated with sAT and then subjected to I/R. Apoptosis rate, mitochondrial function, and antioxidant proteins were measured. To clarify the mechanisms, siRNA were used. In vivo, sAT was pretreated through intragastric administration for 7 days and the I/R model was induced. The neurobehavioral scores, infarction volumes, and some cytokines in the brain were measured. Protein levels were investigated by Western blotting. RESULTS: The results showed that sAT treatment significantly protected cells from I/R-induced cell apoptosis and mitochondrial dysfunction. The antioxidant protein levels were increased in a dose-dependent manner. Further study revealed that sAT induced the deacetylation and phosphorylation of PGC-1α and FOXO3a. sAT treatment also induced the phosphorylation levels of Akt and the expression levels of SIRT1. Using the specific targeted siRNA transfection, the interplay relationship between Akt, SIRT1, PGC-1α, and FOXO3a was verified. Furthermore, the same protective effects were also observed in rats subjected to I/R. CONCLUSION: sAT protected brain cells from I/R-induced mitochondrial oxidative stress and dysfunction through regulating the Akt/SIRT1/FOXO3a/PGC-1α pathway.


Assuntos
Araliaceae , Isquemia Encefálica/tratamento farmacológico , Hipocampo/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/uso terapêutico , Animais , Linhagem Celular , Modelos Animais de Doenças , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
20.
Biomed Pharmacother ; 116: 108994, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31112872

RESUMO

BACKGROUND & AIMS: Numerous references made clear that Triphala is revered as a multiuse therapeutic and perhaps even panacea historically. Nevertheless, the protective mechanism of Triphala on cardio-cerebral vascular diseases (CCVDs) remains not comprehensive understanding. Hence, a network pharmacology-based method was suggested in this study to address this problem. METHODS: This study was based on network pharmacology and bioinformatics analysis. Information on compounds in herbal medicines of Triphala formula was acquired from public databases. Oral bioavailability as well as drug-likeness were screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Then, components of Triphala, candidate targets of each component and known therapeutic targets of CCVDs were collected. Compound-target gene and compounds-CCVDs target networks were created through network pharmacology data sources. In addition, key targets and pathway enrichment were analyzed by STRING database and DAVID database. Moreover, we verified three of the key targets (PTGS2, MMP9 and IL6) predicted by using western blot analysis. RESULTS: Network analysis determined 132 compounds in three herbal medicines that were subjected to ADME screening, and 23 compounds as well as 65 genes formed the principal pathways linked to CCVDs. And 10 compounds, which actually linked to more than three genes, are determined as crucial chemicals. Core genes in this network were IL6, TNF, VEGFA, PTGS2, CXCL8, TP53, CCL2, IL10, MMP9 and SERPINE1. And pathways in cancer, TNF signaling pathway, neuroactive ligand-receptor interaction, etc. related to CCVDs were identified. In vitro experiments, the results indicated that compared with the control group (no treatment), PTGS2, MMP9 and IL6 were up-regulated by treatment of 10 ng/mL TNF-α, while pretreatment with 20-80 µg/mL Triphala could significantly inhibit the expression of PTGS2, MMP9 and IL6. With increasing Triphala concentration, the expression of PTGS2, MMP9 and IL6 decreased. CONCLUSIONS: This study revealed the complex components and pharmacological mechanism of Triphala, and obtained some potential therapeutic targets of CCVDs, which could provide theoretical basis for the research and development of new drugs for treating CCVDs.


Assuntos
Redes Reguladoras de Genes , Extratos Vegetais/uso terapêutico , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/genética , Ciclo-Oxigenase 2/metabolismo , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Metaloproteinases da Matriz/metabolismo , Extratos Vegetais/farmacocinética , Mapas de Interação de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA