Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(2): 940-957, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38417836

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. The pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Cucurbita maxima "Rimu") fruits at 6 developmental stages and identified 5,425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, the lncRNA MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insights into the regulation of fruit development in plants.


Assuntos
Cucurbita , Frutas , Regulação da Expressão Gênica de Plantas , Metionina Adenosiltransferase , RNA Longo não Codificante , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
2.
Int J Pharm ; 652: 123865, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286195

RESUMO

Clinical treatment for osteosarcoma (OS) is still lacking effective means, and no significant progress in OS treatment have been made in recent years. Single chemotherapy has serious side effects and can produce drug resistance easily, resulting poor therapeutic effect. As a modern and non-invasive treatment form, photodynamic therapy (PDT) is widely used to treat diverse cancers. Chemotherapy in combination with PDT is a particularly efficient antitumor method that could overcome the defects of monotherapies. Since mitochondria is a key subcellular organelle involved in cell apoptosis regulation, targeting tumor cells mitochondria for drug delivery has become an important entry point for anti-tumor therapy. Herein, we rationally designed a core-shell structured biomimetic nanoplatform, i.e., D@SLNP@OSM-IR780, to achieve tumor homologous targeting and mitochondria targeted drug release for chemotherapy combined with PDT against OS. Upon 808 nm laser irradiation, D@SLNP@OSM-IR780 exhibited excellent photo-cytotoxicity in vitro. The excellent targeting effect of D@SLNP@OSM-IR780 in tumor tissues produced a tumor inhibition rate of 98.9% in vivo. We further indicated that synergistic chemo-photodynamic effect induced by D@SLNP@OSM-IR780 could activate mitochondria-mediated apoptosis pathway, along with host immune response and potential photothermal effect. On the whole, D@SLNP@OSM-IR780 is revealed to be a promising platform for OS targeted combination therapeutics.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Biomimética , Nanopartículas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Mitocôndrias , Linhagem Celular Tumoral
3.
Eur J Pharm Sci ; 190: 106574, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659459

RESUMO

Biomimetic nano-platforms have attracted extensive attention due to their good biocompatibility, low immunogenicity, and homologous targeting to lesions. In this study, glioma cell membranes are used to encapsulate indocyanine green (ICG) loaded nanoparticles (SLNP/ICG), termed as SLNP/ICG@M for targeted photodynamic therapy (PDT) against glioma. Cell membrane modification significantly enhances cellular uptake of SLNP/ICG@M in homologous glioma cells in vitro and tumor distribution in vivo. Furthermore, SLNP/ICG@M can stimulate glioma cells to generate plentiful reactive oxygen species (ROS) under NIR irradiation, finally producing excellent photo-cytotoxicity and the optimal tumor growth inhibition with a tumor suppression rate of 93.2%. We also confirm that SLNP/ICG@M combined with NIR irradiation could activate mitochondria mediated apoptosis pathway, and the increased proliferation of CD4+ T cells and CD8+ T cells accompanied by immune activation further enhances PDT effect of SLNP/ICG@M. Herein, SLNP/ICG@M is a promising biomimetic nano drug delivery system for glioma targeted PDT therapy.


Assuntos
Glioma , Nanopartículas , Fotoquimioterapia , Humanos , Biomimética , Linfócitos T CD8-Positivos , Glioma/tratamento farmacológico , Verde de Indocianina , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/uso terapêutico
4.
Plant Dis ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755413

RESUMO

Balsam (Impatiens balsamina L.) is an ornamental plant cultivated extensively in China and elsewhere, but it has also been used as a medicinal plant for thousands of years (Qian et al., 2023). In 2022, an examination of 10 garden-grown I. balsamina plants in Chaoyang, Beijing, China revealed eight plants with blotches, mosaic symptoms, and deformed leaves (Fig. S1A). Total RNA was extracted from the symptomatic leaf tissue of these eight plants using the TRIzol reagent (Invitrogen, USA). Four RNA preparations (high quality and quantity) were combined for the small RNA sequencing analysis (TIANGEN Biotech Co., China). A total of 16,509,586 clean reads (18-30 nt) were obtained and assembled into larger contigs using Velvet 1.0.5. A search of the National Center for Biotechnology Information non-redundant database using BLASTX indicated 72, 24, and 19 contigs were homologous to broad bean wilt virus 2 (BBWV2), cucumber mosaic virus (CMV), and impatiens cryptic virus 1 (ICV1) sequences (Zheng et al., 2022), respectively. To verify the next-generation sequencing data, the following three sets of primer pairs were designed according to the contig sequences of these three viruses: CMV-F:5'-ATGGACAAATCTGAATCAACCAGTGC-3'/CMV-R: 5'-CCGTAAGCTGGATGGACAACC-3'; BBWV2-F:5'-CAATTTGGACAACTACAATTTGCC-3'/ BBWV2-R: 5'-GCTGAGTCTAAATCCCATCTATC-3'; and ICV1-F: 5'-CGCACAACT CTACAAT GACATGGTC-3'/ICV1-R: 5'-AGTTCCATCGTCCAGTAGGCG-3'. The primers were used to amplify CMV, BBWV2, and ICV1 sequences by reverse transcription-polymerase chain reaction (RT-PCR), with individual RNA preparations serving as the template. The CMV, BBWV2, and ICV1 target sequences were amplified from eight, four, and four samples, respectively (Fig. S1B). To evaluate virus infectivity, Nicotiana benthamiana seedlings were inoculated using a leaf tissue extract prepared from an infected I. balsamina plant. At 7 days post-inoculation, disease symptoms were detected on N. benthamiana systemic leaves (e.g., deformation and apical necrosis) (Fig. S1C). Confirmation tests involving RT-PCR indicated the N. benthamiana plants were infected with BBWV2 and CMV, but not with ICV1 (Fig. S1D). To obtain the complete BBWV2 genome sequence (RNA1 and RNA2), virus-specific PCR primers (Table S1) were designed to produce the terminal sequences via 5' and 3' rapid amplification of cDNA ends (RACE), which was completed using the SMARTer RACE 5'/3' Kit (Clontech, China). The RNA1 and RNA2 sequences comprised 5,957 nt (GenBank: OQ857921) and 3,614 nt (GenBank: OQ857922), respectively. The BLAST analyses revealed RNA1 and RNA2 were similar to sequences in other BBWV2 isolates (sequence identities of 78.88% to 95.15% and 80.83% to 91.51%, respectively). Using the neighbor-joining method and MEGA 7.0, the phylogenetic relationships between the BBWV2 isolated in this study and other isolates were determined on the basis of the full-length RNA1 and RNA2 sequences (Kumar et al., 2016). According to the RNA1 and RNA2 sequences, the BBWV2 isolated in this study was most closely related to the BBWV2 isolate from Gynura procumbens (GenBank: KX686589) and the BBWV2 isolate from Nicotiana tabacum (GenBank: KX650868), respectively (Fig. S1E). To the best of our knowledge, this is the first report of I. balsamina naturally infected with BBWV2 in China. The study findings may be useful for detecting BBWV2 in I. balsamina and for diagnosing and managing the associated disease. The authors declare no conflict of interest. Yanhong Qiu and Haijun Zhang contributed equally to this paper. Funding: This research was supported by the Beijing Academy of Agriculture and Forestry Foundation, China (KYCX202305, QNJJ202131, and KJCX20230214). References: Qian H.Q., et al. 2023. J Ethnopharmacol. 303. Zheng Y., et al. 2022. Arch Virol. 167: 2099-2102. Kumar et al. 2016. Mol Biol Evol. 33: 1870-1874.

5.
Oncol Res ; 29(5): 351-363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37305160

RESUMO

The blood-brain barrier (BBB) is an essential component in regulating and maintaining the homeostatic microenvironment of the central nervous system (CNS). During the occurrence and development of glioblastoma (GBM), BBB is pathologically destroyed with a marked increase in permeability. Due to the obstruction of the BBB, current strategies for GBM therapeutics still obtain a meager success rate and may lead to systemic toxicity. Moreover, chemotherapy could promote pathological BBB functional restoration, which results in significantly reduced intracerebral transport of therapeutic agents during multiple administrations of GBM and the eventual failure of GBM chemotherapy. The effective delivery of intracerebral drugs still faces severe challenges. However, strategies that regulate the pathological BBB to enhance the transport of therapeutic agents across the barrier may provide new opportunities for the effective and safe treatment of GBM. This article reviews the structure and function of BBB in physiological states, the mechanisms underlying BBB pathological fenestration during the development of GBM, and the therapeutic strategies of GBM based on BBB intervention and medicinal drugs transporting across the BBB.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Humanos , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Microambiente Tumoral
6.
Nanomedicine ; 28: 102218, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413510

RESUMO

Vascular endothelial growth factor (VEGF) has been implicated as the key regulator of tumor neovascularization. RNAi interference plays a critical role on down-regulation of VEGF, while single VEGF inhibition could not completely suppress angiogenesis and tumor growth; the effect of siRNA is temporary. To improve glioma therapy efficacy, an angiopep-2 (Ap) modified redox-responsive glycolipid-like copolymer co-delivering siVEGF and paclitaxel (PTX), termed as Ap-CSssSA/P/R complexes, was developed in this study. Ap modification significantly enhanced the distribution of Ap-CSssSA in glioma cells both in vitro and in vivo. Ap-CSssSA/P/R complexes could simultaneously deliver siVEGF and PTX into tumor cells, exhibiting great superiority in glioma growth suppression via receptor-mediated targeting delivery and cell apoptosis, accompanied with an obvious inhibition of neovascularization induced by VEGF gene silencing. The present study indicated that the combination delivery of siVEGF and PTX via Ap-modified copolymeric micelles presented a promising and safe platform for glioma targeted therapeutics.


Assuntos
Glioma/tratamento farmacológico , Glioma/terapia , Paclitaxel/uso terapêutico , Interferência de RNA/fisiologia , RNA Interferente Pequeno/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioma/genética , Humanos , Microscopia Eletrônica de Transmissão , Oxirredução/efeitos dos fármacos , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Dermatol Surg ; 46(12): e118-e125, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32187039

RESUMO

BACKGROUND: The tear trough deformity is a sign of eye aging. Filling is an ideal choice for the tear trough accompanied by infraorbital hollows. OBJECTIVE: To evaluate the efficacy and safety of stromal vascular fraction gel (SVF-gel) as a filler for the tear trough deformity which is combined with infraorbital hollows. MATERIALS AND METHODS: From July 2017 to June 2018, 33 patients underwent autologous fat aspiration and were followed up successfully. Stromal vascular fraction gel was used to correct patients with bilateral Barton I/II; tear trough deformity and infraorbital hollows. Improvement was evaluated by measuring skin-periosteal depth, 3D volume, global aesthetic improvement scale (GAIS), and patient self-assessment. RESULTS: Skin-periosteal depth improved significantly (p < .001). The volumetric increment of the tear trough and infraorbital regions increased 2.132 ± 0.671 mL, and the retention rate was excellent (72.87 ± 10.23%). The GAIS showed a high score (2.5 ± 0.5 points), with patient self-assessment showing satisfactory results for all 7 questions on the questionnaire. CONCLUSION: The high retention rate of SVF-gel suggests that it can provide an effective solution to tear trough deformity accompanied by infraorbital hollows.


Assuntos
Tecido Adiposo/transplante , Preenchedores Dérmicos/administração & dosagem , Satisfação do Paciente , Ritidoplastia/métodos , Adulto , Preenchedores Dérmicos/efeitos adversos , Autoavaliação Diagnóstica , Estética , Pálpebras , Feminino , Seguimentos , Géis , Humanos , Injeções Subcutâneas , Lipectomia , Masculino , Pessoa de Meia-Idade , Ritidoplastia/efeitos adversos , Envelhecimento da Pele , Fatores de Tempo , Transplante Autólogo/métodos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA