Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Clin Chim Acta ; 561: 119812, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876250

RESUMO

GATM-related Fanconi renotubular syndrome 1 (FRTS1) is a form of renal Fanconi syndrome (RFS), which is a disorder of solute and water reabsorption caused by defects in the function of the entire proximal tubule. Recent findings reveal the molecular basis of FRTS1: Intramitochondrial fiber aggregation triggered by mutant GATM provides a starting point for proximal tubule damage and drives disease progression. As a rare and newly recognized inherited kidney disease, the complex manifestations of FRTS1 are easily underdiagnosed or misdiagnosed. We discuss the complex phenotype of a 26-year-old woman with onset in infancy and a long history of hypophosphatemic rickets. We also identified a novel heterozygous missense variant in the GATM gene in this patient. The novel variant and phenotype we report expand the disease spectrum of FRTS1. We recommend screening for GATM in children with RFS, especially in patients with resistant rickets who have previously had negative genetic testing. In addition, we found pathological deposition of mutant GATM proteins within mitochondria in the patient's urinary sediment cells by a combination of electron microscopy and immunofluorescence. This unique urine cytology experiment has the potential to be a valuable tool for identifying patients with RRTS1.


Assuntos
Síndrome de Fanconi , Fenótipo , Raquitismo Hipofosfatêmico , Humanos , Feminino , Adulto , Síndrome de Fanconi/genética , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/patologia , Raquitismo Hipofosfatêmico/genética , Raquitismo Hipofosfatêmico/diagnóstico , Mutação de Sentido Incorreto
2.
ACS Appl Mater Interfaces ; 16(15): 18459-18473, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578815

RESUMO

Reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) hold great promise for tumor treatment. However, hypoxia, insufficient H2O2, and overexpressed glutathione (GSH) in the tumor microenvironment (TME) hinder ROS generation significantly. Herein, we reported CaO2@Cu-TCPP/CUR with O2/H2O2/Ca2+ self-supply and GSH depletion for enhanced PDT/CDT and Ca2+ overload synergistic therapy. CaO2 nanospheres were first prepared and used as templates for guiding the coordination between the carboxyl of tetra-(4-carboxyphenyl)porphine (TCPP) and Cu2+ ions as hollow CaO2@Cu-TCPP, which facilitated GSH-activated TCPP-based PDT and Cu+-mediated CDT. The hollow structure was then loaded with curcumin (CUR) to form CaO2@Cu-TCPP/CUR composites. Cu-TCPP prevented degradation of CaO2, while Cu2+ ions reacted with GSH to deplete GSH, produce Cu+ ions, and release TCPP, CaO2, and CUR. CaO2 reacted with H2O to generate O2, H2O2, and Ca2+ to achieve O2/H2O2/Ca2+ self-supply for TCPP-based PDT, Cu+-mediated CDT, and CUR-enhanced Ca2+ overload therapy. Thus, this multilevel ROS amplifier enhances synergistic therapy with fewer side effects and drug resistance.


Assuntos
Curcumina , Nanosferas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Glutationa , Microambiente Tumoral , Linhagem Celular Tumoral , Oxigênio
3.
Clin Exp Pharmacol Physiol ; 51(4): e13845, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382550

RESUMO

Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.


Assuntos
Apigenina , Aterosclerose , Glucuronatos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Aterosclerose/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
ACS Appl Mater Interfaces ; 15(42): 49583-49594, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823823

RESUMO

The performance of contact resistive pressure sensors heavily relies on the intrinsic characteristics of the active layers, including the mechanical surface structure, conductivity, and elastic properties. However, efficiently and simply regulating the conductivity, morphology, and modulus of the active layers has remained a challenge. In this study, we introduced electro-polymerized polypyrrole (ePPy) to design flexible contact piezoresistive sensors with tailored intrinsic properties. The customizable intrinsic property of ePPy was comprehensively illustrated on the chemical and electronic structure scale, and the impact of ePPy's intrinsic properties on the sensing performance of the device was investigated by determining the correlation between resistivity, roughness, and device sensitivity. Due to the synergistic effects of roughness, conductivity, and elastic properties of the active layers, the flexible ePPy-based pressure sensor exhibited high sensitivity (3.19 kPa-1, 1-10 kPa, R2 = 0.97), fast response time, good durability, and low power consumption. These advantages allowed the sensor to offer an immediate response to human motion such as finger-bending and grasping movements, demonstrating the promising potential of tailorable ePPy-based contact piezoresistive sensors for wearable electronic applications.

5.
Toxins (Basel) ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37756005

RESUMO

Microcystin-LR (MC-LR) contamination is a worldwide environmental problem that poses a grave threat to the water ecosystem and public health. Exposure to MC-LR has been associated with the development of intestinal injury, but there are no effective treatments for MC-LR-induced intestinal disease. Probiotics are "live microorganisms that are beneficial to the health of the host when administered in sufficient quantities". It has been demonstrated that probiotics can prevent or treat a variety of human diseases; however, their ability to mitigate MC-LR-induced intestinal harm has not yet been investigated. The objective of this study was to determine whether probiotics can mitigate MC-LR-induced intestinal toxicity and its underlying mechanisms. We first evaluated the pathological changes in colorectal tissues using an animal model with sub-chronic exposure to low-dose MC-LR, HE staining to assess colorectal histopathologic changes, qPCR to detect the expression levels of inflammatory factors in colorectal tissues, and WB to detect the alterations on CSF1R signaling pathway proteins in colorectal tissues. Microbial sequencing analysis and screening of fecal microorganisms differential to MC-LR treatment in mice. To investigate the role of microorganisms in MC-LR-induced colorectal injury, an in vitro model of MC-LR co-treatment with microorganisms was developed. Our findings demonstrated that MC-LR treatment induced an inflammatory response in mouse colorectal tissues, promoted the expression of inflammatory factors, activated the CSF1R signaling pathway, and significantly decreased the abundance of Lactobacillus. In a model of co-treatment with MC-LR and Lactobacillus fermentum (L. fermentum), it was discovered that L. fermentum substantially reduced the incidence of the colorectal inflammatory response induced by MC-LR and inhibited the protein expression of the CSF1R signaling pathway. This is the first study to suggest that L. fermentum inhibits the CSF1R signaling pathway to reduce the incidence of MC-LR-induced colorectal inflammation. This research may provide an excellent experimental foundation for the development of strategies for the prevention and treatment of intestinal diseases in MC-LR.


Assuntos
Neoplasias Colorretais , Limosilactobacillus fermentum , Humanos , Animais , Camundongos , Ecossistema , Inflamação/induzido quimicamente
6.
Biomed Pharmacother ; 162: 114733, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087977

RESUMO

Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.


Assuntos
Cardiotoxicidade , Interleucina-17 , Camundongos , Masculino , Animais , Cardiotoxicidade/metabolismo , Interleucina-17/metabolismo , Lipidômica , Transcriptoma , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Inflamação/metabolismo , Estresse Oxidativo , Miócitos Cardíacos/metabolismo , Apoptose
7.
Environ Res ; 222: 115334, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702192

RESUMO

Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Doença Pulmonar Obstrutiva Crônica , Humanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Inquéritos Nutricionais , Estudos Longitudinais , Modelos Logísticos , Biomarcadores/urina
8.
Front Aging Neurosci ; 14: 941994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158548

RESUMO

Background: Oxidative stress, cholinergic deficiency, and neuroinflammation are hallmarks of most neurodegenerative disorders (NDs). Lipids play an important role in brain development and proper functioning. Marine-derived lipids have shown good memory-improving potentials, especially those from fish and microalgae. The cultivated macroalga Hizikia fusiforme is healthy food and shows benefits to memory, but the study is rare on the brain healthy value of its oil. Previously, we had reported that the Hizikia fusiforme functional oil (HFFO) contains arachidonic acid, 11,14,17-eicosatrienoic acid, phytol, and other molecules displaying in vitro acetylcholinesterase inhibitory and nitroxide scavenging activity; however, the in vivo effect remains unclear. In this study, we further investigated its potential effects against lipopolysaccharides (LPS)- or aluminum trichloride (AlCl3)-induced memory deficiency in zebrafish and its drug-related properties in silica. Methods: We established memory deficit models in zebrafish by intraperitoneal (i.p.) injection of lipopolysaccharides (LPS) (75 ng) or aluminum trichloride (AlCl3) (21 µg), and assessed their behaviors in the T-maze test. The interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), acetylcholine (ACh), and malondialdehyde (MDA) levels were measured 24 h after the LPS/AlCl3 injection as markers of inflammation, cholinergic activity, and oxidative stress. Furthermore, the interaction of two main components, 11,14,17-eicosatrienoic acid and phytol, was investigated by molecular docking, with the important anti-inflammatory targets nuclear factor kappa B (NF-κB) and cyclooxygenase 2 (COX-2). Specifically, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of HFFO were studied by ADMETlab. Results: The results showed that HFFO reduced cognitive deficits in zebrafish T-maze induced by LPS/AlCl3. While the LPS/AlCl3 treatment increased MDA content, lowered ACh levels in the zebrafish brain, and elevated levels of central and peripheral proinflammatory cytokines, these effects were reversed by 100 mg/kg HFFO except for MDA. Moreover, 11,14,17-eicosatrienoic acid and phytol showed a good affinity with NF-κB, COX-2, and HFFO exhibited acceptable drug-likeness and ADMET profiles in general. Conclusion: Collectively, this study's findings suggest HFFO as a potent neuroprotectant, potentially valuable for the prevention of memory impairment caused by cholinergic deficiency and neuroinflammation.

9.
Brain Behav ; 12(4): e2530, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234352

RESUMO

BACKGROUND: Whether the circadian rhythms of blood pressure (BP) contribute to the presence of cerebral microbleeds (CMBs) remains unknown. This study aimed to assess the relationship between nocturnal BP and CMBs in hypertensive patients. METHODS: This prospective case-control study recruited 51 hypertensive patients with CMBs and 51 hypertensive patients without CMBs, matched with age and gender, serving as controls. A 24-h ambulatory BP monitoring was conducted in all subjects. Differences in ambulatory BP parameters between the two groups were compared. Logistic regression analyzes were conducted to investigate the relationship between the ambulatory BP parameters and presence of CMBs. RESULTS: Patients with CMBs had a significant higher nocturnal mean SBP and lower relative nocturnal SBP dipping rate. Two logistic models were constructed to explore the association between ABPM indices and the presence of CMBs, adjusted with history of ischemic stroke and smoking. In model 1, higher nocturnal mean SBP positively correlated with presence of CMBs [standardized ß = 0.254, odds ratio (OR) = 1.029, p = .041]. In model 2, the relative nocturnal SBP dipping rate was negatively correlated with CMBs (standardized ß = -.363, OR = 0.918, p = .007). Only patients with deep CMBs had significant higher nocturnal mean SBP and lower relative nocturnal SBP dipping rate in comparison with those without CMBs. CONCLUSIONS: Higher nocturnal SBP and lower relative nocturnal SBP dipping rate may be associated with CMBs in hypertensive patients.


Assuntos
Ritmo Circadiano , Hipertensão , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Estudos de Casos e Controles , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Humanos , Hipertensão/complicações
10.
Mol Med Rep ; 25(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779493

RESUMO

To investigate the role of NEAT1 and the microRNA (miR)­377/fibroblast growth factor receptor 1 (FGFR1) axis in cervical cancer (CC), the expression levels of NEAT1, FGFR1 and miR­377 were detected in CC tissues and cell lines. NEAT1 or FGFR1 was knocked down by transfection with short hairpin RNA (sh)­NEAT1 or sh­FGFR1, and miR­377 was overexpressed by transfection with miR­377 mimics in HeLa and C33A cells. Cell viability and migration were measured using MTT and Transwell assays, respectively. Cell apoptosis was determined by flow cytometry. A dual luciferase reporter assay was performed to confirm the presence of binding sites between miR­377 and FGFR1. The results revealed that the expression levels of NEAT1 and FGFR1 were significantly elevated, whereas miR­377 expression was markedly decreased in CC tissues and cell lines. In HeLa and C33A cells, after NEAT1 knockdown, miR­377 expression was increased, cell viability and migration were inhibited, and apoptosis was induced. Similarly, silencing FGFR1 inhibited cell viability and migration, and induced apoptosis of HeLa and C33A cells. A dual luciferase reporter gene assay verified a targeting relationship between NEAT1 and miR­377. Inhibition of miR­377 or overexpression of FGFR1 reversed the effects of NEAT1 knockdown on cell function in HeLa and C33A cells. Moreover, a dual luciferase reporter assay confirmed that FGFR1 was a direct target of miR­377. In conclusion, suppression of NEAT1 inhibited cell viability and migration, and promoted apoptosis of CC cells, and these effects were achieved through regulation of the miR­377/FGFR1 axis.


Assuntos
MicroRNAs/genética , RNA Longo não Codificante/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Neoplasias do Colo do Útero/genética , Idoso , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Cultura Primária de Células , RNA Longo não Codificante/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias do Colo do Útero/metabolismo
11.
Biomaterials ; 280: 121308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896860

RESUMO

Nanozymes have been combined with glucose oxidase (GOx) for dual-enzyme cascade catalytic therapy. However, their catalysis efficiency is restricted because of the hypoxia tumor microenvironment (TME). Although many methods are developed for O2 supply, the O2 leakage and consumption of H2O2 compromised their practical application. Herein, a biocompatible carbon nitride (C3N4)/nanozyme/GOx triple cascade nanocatalyst was designed with laser-activatable O2 self-supply via water splitting to relieve tumor hypoxia and thus improve the catalysis efficiency. To this end, polydopamine (PDA) nanosphere was prepared and attached with C3N4 nanosheet to improve water splitting efficiency and realize photothermal-enhanced catalysis, simultaneously. The PDA@C3N4 composite was then coated with MIL-100 (Fe), where GOx was loaded, to form C3N4/MIL-100/GOx triple cascade nanocatalyst. The triple cascade catalysis was realized with laser-activatable O2 supply from PDA@C3N4, H2O2 generation with GOx, and •OH production from peroxidase-like MIL-100 (Fe) for tumor therapy. Upon 808 nm irradiation, PDA, as a photothermal agent, realized photothermal therapy and enhanced the catalytic therapy. Thus, the synergy of laser-activatable O2 supply and photothermal enhancement in our triple cascade nanocatalyst improved the performance of catalytic therapy without drug resistance and toxicity to normal tissues.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Catálise , Linhagem Celular Tumoral , Glucose Oxidase/uso terapêutico , Humanos , Peróxido de Hidrogênio/farmacologia , Hipóxia/tratamento farmacológico , Lasers , Nanopartículas/uso terapêutico , Microambiente Tumoral
12.
World J Surg Oncol ; 19(1): 211, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256769

RESUMO

OBJECTIVE: The aim of this study was to evaluate the predictive factors of central lymph node metastasis (CLNM) and BRAFV600E mutation in Chinese patients with papillary thyroid carcinoma (PTC). METHODS: A total of 943 PTC patients who underwent thyroidectomy from 2014 to 2016 at our hospital were enrolled. Those patients were divided into PTC > 10 mm and papillary thyroid microcarcinoma (PTMC) groups by tumor size. The BRAFV600E mutation was examined by quantitative real-time PCR. Univariate and multivariate analyses were used to examine risk factors associated with CLNM and the BRAFV600E mutation. RESULTS: The frequency of CLNM was 53% (505/943). Both univariate and multivariate analyses suggested that the risk factors for CLNM in PTC patients were male, younger age, and larger tumor size (P < 0.05). Coexistent Hashimoto thyroiditis (HT) was an independent protective factor against CLNM when the tumor was > 10 mm (P = 0.006). Stratified analysis revealed that male, age ≤ 30 years, and tumor size > 5 mm were independent risk factors for CLNM. The BRAFV600E mutation rate was 85%. Multivariate logistic regression analysis revealed that age (P < 0.001) and coexistent HT (P = 0.005) were independent predictive factors of BRAFV600E mutation in PTC patients. Only age was a risk factor for the BRAFV600E mutation when the tumor was > 10 mm (P = 0.004). In the PTMC group, the BRAFV600E mutation was significantly correlated with tumor size (P < 0.001) and coexistent HT (P = 0.03). Stratified analysis revealed that age > 30 years and tumor size > 5 mm were independent predictive factors of BRAFV600E mutation. Furthermore, the incidence of CLNM was significantly higher in BRAFV600E mutation-positive patients (P = 0.009) when the tumor was ≤ 5 mm. CONCLUSION: The factors male, younger age (≤ 30 years), large tumor size (> 5 mm), and coexistent HT are independent predicative factors for CLNM. The BRAFV600E mutation is associated with both large size and without HT in PTMC patients, age > 30 years in the PTC > 10 mm group. The BRAFV600E mutation was an independent risk factor for CLNM when the tumor was ≤ 5 mm. For optimal management, these features should be comprehensively evaluated to determine the initial surgical approach for PTC patients.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Adulto , China/epidemiologia , Humanos , Metástase Linfática , Masculino , Mutação , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/genética
13.
Exp Ther Med ; 22(2): 830, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34149876

RESUMO

Non-alcoholic steatohepatitis (NASH) has no approved therapy. The farnesoid X nuclear receptor (FXR) agonist obeticholic acid (OCA) has shown promise as a drug for NASH, but can adversely affect plasma lipid profiles. Therefore, the present study aimed to investigate the effects and underlying mechanisms of OCA in combination with simvastatin (SIM) in a high-fat diet (HFD)-induced model of NASH. C57BL/6J mice were fed with a HFD for 16 weeks to establish the NASH model. The mice were randomly divided into the following five groups: HFD, HFD + OCA, HFD + SIM, HFD + OCA + SIM and control. After 16 weeks, the mice were sacrificed under anesthesia. The ratios of liver weight to body weight (Lw/Bw) and of abdominal adipose tissue weight to body weight were calculated. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, triglycerides and low-density lipoprotein were measured. Liver sections were stained with hematoxylin and eosin. The protein levels of FXR, small heterodimeric partner (SHP) and cytochrome P450 family 7 subfamily A member 1 (CYP7A1) in the liver were detected by western blotting, while the mRNA levels of FXR, SHP, CYP7A1, bile salt export pump, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), sterol regulatory element binding protein-1 (SREBP1) and fatty acid synthase (FASN) were examined by reverse transcription-quantitative polymerase chain reaction. The administration of OCA with or without SIM reduced the liver inflammation score compared with those of the HFD and HFD + SIM groups, with no significant difference between the HFD + OCA and HFD + OCA + SIM groups. The steatosis score followed similar trends to the inflammation score. In HFD-fed mice, OCA combined with SIM prevented body weight gain compared with that in HFD and HFD + OCA groups, and reduced the Lw/Bw ratio compared with that in the HFD and HFD + SIM groups. In addition to preventing HFD-induced increases of ALT and AST, the combination of OCA and SIM reduced the mRNA levels of IL-6, TNF-α, SREBP1 and FASN. On the basis of these results, it may be concluded that the strategy of combining OCA with SIM represents an effective pharmacotherapy for NASH.

14.
ACS Omega ; 6(13): 8958-8966, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842766

RESUMO

Although previous studies have reported that saponins (ginsenosides, the major active and most representative ingredients in Panax ginseng C.A. Meyer) exerted a good ameliorative effect on cisplatin (CP)-induced acute kidney injury in animal models, little attention has been paid to a large number of polysaccharides isolated and purified from ginseng. This work aimed to investigate the protective effect and the possible molecular mechanism of ginseng polysaccharide (WGP) on CP-induced kidney toxicology in mice. The results from biomarker analysis including serum creatinine (CRE) and blood urea nitrogen (BUN) confirmed the protective effect of WGP at 200 and 400 mg/kg on CP-induced renal-toxicology. We found that WGP reduces the apoptosis of kidney cells by inhibiting endoplasmic reticulum (ER) stress caused by CP, which is manifested by increased phosphorylation of PERK. In addition, the apoptosis-associated with caspase 3 activation in renal cells induced by CP was inhibited after administration of WGP, and the phosphorylation levels of PI3K and AKT were also reduced significantly. We also demonstrated that after exposure to CP, the unfolded protein response signaling pathway PERK-eIF2α-ATF4 axis was significantly activated, manifested by increased phosphorylation of eIF2α and increased expression of ATF4 and CHOP. Interestingly, the WGP administration improves this situation. Furthermore, the supplement of WGP inhibited the overexpression of nuclear factor-kappa B p65 (NF-κB p65) and tumor necrosis factor-α (TNF-α) caused by CP exposure. In short, for the first time, our findings indicated that WGP could effectively prevent CP-induced ER stress, inflammation, and apoptosis in renal cells, in part, by regulating the PI3K/AKT and PERK-eIF2α-ATF4 signaling pathways.

15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(1): 46-51, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33522176

RESUMO

In recent years, the application of stent intervention in the treatment of non-vascular stenosis caused by benign and malignant factors has been widely concerned by researchers at home and abroad. The high incidence of malignant tumor diseases, further promotes the development of stent intervention. The conventional bare stents are prone to irritate luminal mucosa and produce restenosis and other complications. The emergence of drug-eluting stent is expected to solve this problem and become one of the important development trends of non-vascular stents. In this paper, the drug loading materials, drug loading layer drugs, preparation technology and quality evaluation methods of non-vascular drugeluting stent are described based on the recent research and clinical application documents, so as to provide basis and direction for the follow-up research and development.


Assuntos
Stents Farmacológicos , Reestenose Coronária , Humanos , Desenho de Prótese , Resultado do Tratamento
16.
J Ethnopharmacol ; 267: 113500, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091499

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a major complication of diabetes. The kidney disease develops in nearly 20%-40% of type 2 diabetes (T2D) patients. Ginseng is the root of Panax ginseng C. A. Meyer and has been used in prevention and treatment of diseases for more than 2000 years as a traditional oriental medicine. The 20(R)-ginsenoside Rg3, an active saponin isolated from ginseng, can prevent and treat many diseases. The object of this research was to explore the alleviative effects of 20(R)-Rg3 on DN in mice. MATERIALS AND METHODS: The T2D animal model was induced by continuous access to a high fat diet (HFD) combined with a single injection of 100 mg/kg streptozotocin (STZ) in C57BL/6 mice. The mice were treated by oral gavage of the 20(R)-Rg3 (10, 20 mg/kg) for 8 weeks. Functional and histopathological analyses of the kidneys were then performed. Protein expression levels of MAPKs and NF-κB signal pathways in the kidney were evaluated by western blotting. The expressions of HO-1 and NF-κB in the kidney were measured by fluorescent labeling staining. Other assessments including fasting blood glucose (FBG) levels, blood lipids, oxidative indicators, and inflammatory factors were all performed. RESULTS: Abnormally elevated FBG levels were observed in HFD/STZ mice, contributing significantly to the occurrence of DN. Simultaneously, HFD/STZ mice showed the rise of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the decrease in high density lipoprotein cholesterol (HDL-C). DN was evidenced by the overproduction of malondialdehyde (MDA), decreased levels of superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, high levels of serum blood urea nitrogen (BUN) and creatinine (Cr). Simultaneously, the results of the immunofluorescence assay showed an increased expression level in NF-κB p65 while a decrease in antioxidant enzyme HO-1 was observed. Herein, 20(R)-Rg3 treatment for 8 weeks not only attenuated FBG levels and advanced glycation end products (AGEs) levels but also improved insulin (INS) level, blood lipids, oxidative stress, and renal function by regulating MAPKs and NF-κB signal pathways in DN mice. CONCLUSION: Taken together, the findings from the present study explicitly confirmed that 20(R)-Rg3 exerted ameliorative effects on DN mice via improving anti-oxidative activity and reducing renal inflammation.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Ginsenosídeos/farmacologia , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Heme Oxigenase-1/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Estreptozocina , Fator de Transcrição RelA/metabolismo
17.
Exp Ther Med ; 20(6): 228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33149783

RESUMO

Hepatic fibrosis is a crucial pathological process involved in the development of chronic hepatitis C (CHC) and may progress to liver cirrhosis and hepatocellular carcinoma. Activated peripheral blood monocytes and intrahepatic macrophages further promote hepatic fibrogenesis by releasing proinflammatory and profibrogenic cytokines. The present study aimed to investigate the role of peripheral CD14+ monocytes and intrahepatic CD163+ macrophages in hepatitis C virus (HCV)-associated liver fibrosis and clarify whether serum soluble CD163 (sCD163) may serve as a fibrosis marker in patients with CHC. A total of 87 patients with CHC and 20 healthy controls were recruited. Serum sCD163 levels were measured by ELISA. Frequencies of peripheral CD14+ monocytes and inflammatory cytokines expressed by CD14+ monocytes were analyzed by flow cytometry. The degree of fibrosis in human liver biopsies was graded using the Metavir scoring system and patients were stratified into two groups based on those results (F<2 vs. F≥2). Hepatic expression of CD163 was examined by immunohistochemical staining. The diagnostic values of sCD163, aspartate aminotransferase to platelet ratio index (APRI), fibrosis 4 score (FIB-4) and the aspartate aminotransferase to alanine aminotransferase ratio (AAR) in significant fibrosis (F≥2) were evaluated and compared using receiver operating characteristic (ROC) curves. The results indicated that the serum sCD163 levels and the frequency of CD14+ monocytes were significantly higher in the patients than that in the controls and positively correlated with liver fibrosis. The level of serum sCD163 was consistent with hepatic CD163 expression in the liver sections from patients. The frequencies of interleukin (IL)-8- and tumor necrosis factor-α-expressing monocytes were increased and that of IL-10-expressing monocytes was decreased in the patients. The area under the ROC curve (AUROC) for sCD163, APRI, FIB-4 and AAR was 0.876, 0.785, 0.825 and 0.488, respectively, and the AUROC for sCD163 was significantly higher than those for APRI and AAR. In conclusion, sCD163 may serve as a novel marker for assessing the degree of liver fibrosis in HCV-infected patients.

18.
Mol Med Rep ; 22(5): 3795-3803, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000202

RESUMO

Melanoma is a malignant skin cancer type associated with a high mortality rate, but its treatment is currently not ideal. Both microRNA (miR)­214 and cell adhesion molecule 1 (CADM1) are differentially expressed in melanoma, but their role in this cancer type remains unknown. Therefore, the aim of the present study was to investigate the role of CADM1 and miR­214 in melanoma to identify novel targets for its treatment. The expression levels of CADM1 and miR­214 in cells were detected by reverse transcription­quantitative PCR (RT­qPCR). Moreover, cell viability, migration and invasion were measured by MTT, wound healing and Transwell assays, respectively. In addition, the relative expression levels of epithelial­mesenchymal transition (EMT)­related proteins in cells were detected by RT­qPCR and western blotting. It was found that the expression of CADM1 was inhibited in melanoma cells, while miR­214 expression was increased during melanoma tumorigenesis. Furthermore, miR­214 mimics promoted the viability, migration and invasion of melanoma cells. It was also demonstrated that the downregulation of CADM1 reversed the inhibitory effect of the miR­214 inhibitor in melanoma. Moreover, overexpression of CADM1 inhibited the EMT process in melanoma, while the miR­214 inhibitor suppressed the EMT process. The results also indicated that miR­214 promoted the EMT process by downregulating CADM1, which may represent a novel mechanism for the progression of melanoma.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/metabolismo , Neoplasias Cutâneas/metabolismo , Molécula 1 de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Progressão da Doença , Humanos , Melanoma/patologia , MicroRNAs/genética , NF-kappa B/metabolismo , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia , Transfecção
19.
Sci Adv ; 6(17): eaaw8500, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494626

RESUMO

The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered "undruggable," and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail's interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.


Assuntos
Proteína de Ligação a CREB , Proteína Supressora de Tumor p53 , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Humanos , Metástase Neoplásica , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Proteína Supressora de Tumor p53/genética
20.
Chem Biodivers ; 17(8): e2000055, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32419273

RESUMO

Cholinergic disorder, oxidative stress, and neuroinflammation play important roles in the pathology of Alzheimer's disease. To explore the healthy potential of the edible seaweed Hizikia fusiforme on this aspect, a functional oil (HFFO) was extracted from this alga and investigated on its constituents by gas chromatography-mass spectrometry (GC/MS) in this study. Its anti-Alzheimer's related bioactivities including acetylcholinesterase (AChE) inhibition, antioxidation, and anti-neuroinflammation were evaluated, traced, and simulated by in vitro and in silico methods. GC/MS analysis indicated that HFFO mainly contained arachidonic acid (ARA), 11,14,17-eicosatrienoic acid (ETrA), palmitic acid, phytol, etc. HFFO showed moderate AChE inhibition and antioxidant activity. Bioactivity tracing using commercial standards verified that AChE inhibition of HFFO mainly originated from ARA and ETrA, whereas antioxidant activity mainly from ARA. Lineweaver-Burk plots showed that both ARA and ETrA are noncompetitive AChE inhibitors. A molecular docking study demonstrated low CDOCKER interaction energy of -26.33 kcal/mol for ARA and -43.70 kcal/mol for ETrA when interacting with AChE and multiple interactions in the ARA (or ETrA)-AChE complex. In the anti-neuroinflammatory evaluation, HFFO showed no toxicity toward BV-2 cells at 20 µg/mL and effectively inhibited the production of nitroxide and reduced the level of reactive oxygen species in lipopolysaccharide-induced BV-2 cells. The results indicated that HFFO could be used in functional foods for its anti-Alzheimer's disease-related activities.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Óleos de Plantas/farmacologia , Alga Marinha/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA