Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 448, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918408

RESUMO

Multiple sevoflurane exposures may damage the developing brain. The neuroprotective function of dexmedetomidine has been widely confirmed in animal experiments and human studies. However, the effect of dexmedetomidine on the glymphatic system has not been clearly studied. We hypothesized that dexmedetomidine could alleviate sevoflurane-induced circulatory dysfunction of the glymphatic system in young mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 2 h daily, continuously for 3 days. Intraperitoneal injection of either normal saline or dexmedetomidine was administered before every anaesthesia. Meanwhile the circulatory function of glymphatic system was detected by tracer injection at P8 and P32. On P30-P32, behavior tests including open field test, novel object recognition test, and Y-maze test were conducted. Primary astrocyte cultures were established and treated with the PI3K activator 740Y-P, dexmedetomidine, and small interfering RNA (siRNA) to silence ΔFosB. We propose for the first time that multiple exposure to sevoflurane induces circulatory dysfunction of the glymphatic system in young mice. Dexmedetomidine improves the circulatory capacity of the glymphatic system in young mice following repeated exposure to sevoflurane through the PI3K/AKT/ΔFosB/AQP4 signaling pathway, and enhances their long-term learning and working memory abilities.


Assuntos
Aquaporina 4 , Dexmedetomidina , Sistema Glinfático , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sevoflurano , Transdução de Sinais , Animais , Dexmedetomidina/farmacologia , Sevoflurano/farmacologia , Sevoflurano/efeitos adversos , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Transdução de Sinais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino
2.
Biomed Pharmacother ; 175: 116739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759288

RESUMO

BACKGROUND: Ketamine, as a non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was originally used in general anesthesia. Epidemiological data show that ketamine has become one of the most commonly abused drugs in China. Ketamine administration might cause cognitive impairment; however, its molecular mechanism remains unclear. The glymphatic system is a lymphoid system that plays a key role in metabolic waste removal and cognitive regulation in the central nervous system. METHODS: Focusing on the glymphatic system, this study evaluated the behavioral performance and circulatory function of the glymphatic system by building a short-term ketamine administration model in mice, and detected the expression levels of the 5-HT2c receptor, ΔFosb, Pten, Akt, and Aqp4 in the hippocampus. Primary astrocytes were cultured to verify the regulatory relationships among related indexes using a 5-HT2c receptor antagonist, a 5-HT2c receptor short interfering RNA (siRNA), and a ΔFosb siRNA. RESULTS: Ketamine administration induced ΔFosb accumulation by increasing 5-HT2c receptor expression in mouse hippocampal astrocytes and primary astrocytes. ΔFosb acted as a transcription factor to recognize the AATGATTAAT bases in the 5' regulatory region of the Aqp4 gene (-1096 bp to -1087 bp), which inhibited Aqp4 expression, thus causing the circulatory dysfunction of the glymphatic system, leading to cognitive impairment. CONCLUSIONS: Although this regulatory mechanism does not involve the Pten/Akt pathway, this study revealed a new mechanism of ketamine-induced cognitive impairment in non-neuronal systems, and provided a theoretical basis for the safety of clinical treatment and the effectiveness of withdrawal.


Assuntos
Astrócitos , Disfunção Cognitiva , Sistema Glinfático , Hipocampo , Ketamina , Animais , Ketamina/farmacologia , Ketamina/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Camundongos , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Camundongos Endogâmicos C57BL , Células Cultivadas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética
3.
Environ Toxicol ; 36(12): 2521-2529, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34487425

RESUMO

Long-term ketamine abuse can cause significant lower urinary tract symptoms in humans, termed ketamine-associated cystitis (KC). Here, we established a model of long-term (6 months) ketamine administration in wild-type (C57BL/6) mice. We elucidated the pathological effects of ketamine in the bladder and investigated changes in autophagy-associated protein expression (i.e., LC3, Beclin-1, and P62) and inflammatory cytokines (i.e., IL-6 and IL-1ß) in the bladder smooth muscle tissue. Long-term ketamine administration reduced the number of layers in the bladder mucosal epithelial cells (4-5 layers in the saline group vs. 2-3 layers in the ketamine groups), but increased the number of mast cells and collagen fibers. LC3-II/LC3-I, Beclin-1, IL-6, and IL-1ß protein expression in the bladder smooth muscle tissues of ketamine-treated mice was significantly increased. The mRNA and protein levels of P62 in the Ket-60 mg/kg group were also significantly increased, but not the Ket-30 mg/kg group. Our results reveal that long-term ketamine administration can cause cystitis-like pathological changes in mice, and the disordered autophagy in the bladder tissue may be involved in the persistent bladder damage following long-term administration of ketamine at 60 mg/kg.


Assuntos
Ketamina , Bexiga Urinária , Animais , Autofagia , Ketamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso
4.
J Am Chem Soc ; 143(35): 14071-14076, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34450022

RESUMO

Inspired by the exciting physical/chemical properties in metal-organic frameworks (MOFs) of the redox-active tetrathiafulvalene (TTF) ligands, nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], has been designed and developed as an inorganic analogue of the corresponding TTF-type donors (such as tetrathiafulvalene-tetrabenzoate, TTFTB), where a metal site (Ni) replaces the central C═C bond. In this work, [Ni(C2S2(C6H4COOH)2)2] and In3+ have been successfully assembled into a three-dimensional MOF, (Me2NH2+){InIII-[Ni(C2S2(C6H4COO)2)2]}·3DMF·1.5H2O (1, DMF = N,N-dimethylformamide), with satisfying chemical and thermal stabilities. With the combination of reversible redox activity and unsaturated metal sites originated from [Ni(C2S2(C6H4COOH)2)2], 1 showed a significantly enhanced performance in electrocatalytic CO2 reduction compared with the isomorphic MOF, (Me2NH2+)[InIII-(TTFTB)]·0.7C2H5OH·DMF (2, with TTFTB ligand). More importantly, by mimicking the active [NiS4] sites of formate dehydrogenase and CO-dehydrogenase, a prominently higher conversion rate and Faradaic efficiency (FE), with FEHCOO- increasing from 54.7% to 89.6% (at -1.3 V vs RHE, jHCOO- = 36.0 mA cm-2), were achieved in 1. Mechanistic investigations further confirm that [NiS4] can serve as a CO2 binding site and efficient catalytic center. This unprecedented effect of redox-active nickel dithiolene-based MOF catalysts on the performance of electroreduction of CO2 provides an important strategy for designing stable and efficient crystalline enzyme-mimicking catalysts for the conversion of CO2 into high-value chemical stocks.


Assuntos
Dióxido de Carbono/química , Estruturas Metalorgânicas/química , Catálise , Técnicas Eletroquímicas , Índio/química , Ligantes , Níquel/química , Oxirredução
5.
Commun Biol ; 4(1): 525, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953326

RESUMO

Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in µM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/farmacologia , Receptores da Transferrina/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Transporte Biológico , Camundongos , Camundongos Endogâmicos C57BL , Sódio/metabolismo
6.
Function (Oxf) ; 2(2): zqab003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35330817

RESUMO

Metal implants are used worldwide, with millions of nails, plates, and fixtures grafted during orthopedic surgeries. Iron is the most common element of these metal implants. As time passes, implants can be corroded and iron can be released. Ionized iron permeates the surrounding tissues and enters circulation; importantly, iron ions pass through the blood-brain barrier. Can iron from implants represent a risk factor for neurological diseases? This remains an unanswered question. In this study, we discovered that patients with metal implants delivered through orthopedic surgeries have higher incidence of Parkinson's disease or ischemic stroke compared to patients who underwent similar surgeries but did not have implants. Concentration of serum iron and ferritin was increased in subjects with metal implants. In experiments in vivo, we found that injection of iron dextran selectively decreased the presence of divalent metal transporter 1 (DMT1) in neurons through increasing the expression of Ndfip1, which degrades DMT1 and does not exist in glial cells. At the same time, excess of iron increased expression of DMT1 in astrocytes and microglial cells and triggered reactive astrogliosis and microgliosis. Facing the attack of excess iron, glial cells act as neuroprotectors to accumulate more extracellular iron by upregulating DMT1, whereas neurons limit iron uptake through increasing DMT1 degradation. Cerebral accumulation of iron in animals is associated with impaired cognition, locomotion, and mood. Excess iron from surgical implants thus can affect neural cells and may be regarded as a risk factor for neurodegeneration.


Assuntos
Ferro , Neurônios , Animais , Ferro/metabolismo , Neurônios/metabolismo , Neuroglia/metabolismo , Barreira Hematoencefálica/metabolismo , Doença Iatrogênica
7.
J Toxicol Sci ; 45(5): 271-280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32404559

RESUMO

Environmental neurotoxins such as paraquat (PQ), manganese, and 1-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are associated with a higher risk of Parkinson's disease (PD). These parkinsonian toxins exert certain common toxicological effects on astroglia; however, their role in the regulatory functions of astroglial secretory proteins remains unclear. In a previous study, we observed that secretogranin II (SCG2) and secretogranin III (SCG3), which are important components of the regulated secretory pathway, were elevated in PQ-activated U118 astroglia. In the current study, we used the parkinsonian toxins dopamine (DA), active metabolite of MPTP (MPP+), MnCl2, and lipopolysaccharide (LPS) as inducers, and studied the potential regulation of SCG2 and SCG3. Our results showed that all the parkinsonian toxins except LPS affected astroglial viability but did not cause apoptosis. Exposure to DA, MPP+, and MnCl2 upregulated glial fibrillary acidic protein (GFAP), a marker for astrocyte activation, and stimulated the levels of several astrocytic-derived factors. Further, DA, MPP+, and MnCl2 exposure impeded astroglial cell cycle progression. Moreover, the expression of SCG3 was elevated, while its exosecretion was inhibited in astroglia activated by parkinsonian toxins. The level of SCG2 remained unchanged. In combination with our previous findings, the results of this study indicate that SCG3 may act as a cofactor in astrocyte activation stimulated by various toxins, and the regulation of SCG3 could be involved in the toxicological mechanism by which parkinsonian toxins affect astroglia.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cromograninas/fisiologia , Intoxicação por MPTP/complicações , Neurotoxinas/toxicidade , Doença de Parkinson Secundária/etiologia , Ciclo Celular/efeitos dos fármacos , Cloretos/efeitos adversos , Cloretos/toxicidade , Cromograninas/metabolismo , Dopamina/administração & dosagem , Dopamina/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Compostos de Manganês/efeitos adversos , Paraquat/toxicidade , Secretogranina II/metabolismo , Secretogranina II/fisiologia , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
8.
Front Pharmacol ; 8: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373844

RESUMO

Ketamine is an injectable anesthetic and recreational drug of abuse commonly used worldwide. Many experimental studies have shown that ketamine can impair cognitive function and induce psychotic states. Neuroinflammation has been suggested to play an important role in neurodegeneration. Meanwhile, ketamine has been shown to modulate the levels of inflammatory cytokines. We hypothesized that the effects of ketamine on the central nervous system are associated with inflammatory cytokines. Therefore, we set out to establish acute and chronic ketamine administration models in C57BL/6 mice, to evaluate spatial recognition memory and emotional response, to analyze the changes in the levels of the inflammatory cytokines interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in the mouse hippocampus, employing behavioral tests, Western blot, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Our results showed that ketamine at the dose of 60 mg/kg induced spatial recognition memory deficit and reduced anxiety-like behaviors in mice after chronic administration. Moreover, we found that ketamine increased the hippocampal levels of IL-6 and IL-1ß after single, multiple and long-term administration in a dose-dependent manner. However, the expression level of TNF-α differed in the mouse hippocampus under different conditions. Single administration of ketamine increased the level of TNF-α, whereas multiple and long-term administration decreased it significantly. We considered that TNF-α expression could be controlled by a bi-directional regulatory pathway, which was associated with the dose and duration of ketamine administration. Our results suggest that the alterations in the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α may be involved in the neurotoxicity of ketamine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA