Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Gastroenterol ; 24(1): 137, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641789

RESUMO

OBJECTIVE: Prediction of lymph node metastasis (LNM) for intrahepatic cholangiocarcinoma (ICC) is critical for the treatment regimen and prognosis. We aim to develop and validate machine learning (ML)-based predictive models for LNM in patients with ICC. METHODS: A total of 345 patients with clinicopathological characteristics confirmed ICC from Jan 2007 to Jan 2019 were enrolled. The predictors of LNM were identified by the least absolute shrinkage and selection operator (LASSO) and logistic analysis. The selected variables were used for developing prediction models for LNM by six ML algorithms, including Logistic regression (LR), Gradient boosting machine (GBM), Extreme gradient boosting (XGB), Random Forest (RF), Decision tree (DT), Multilayer perceptron (MLP). We applied 10-fold cross validation as internal validation and calculated the average of the areas under the receiver operating characteristic (ROC) curve to measure the performance of all models. A feature selection approach was applied to identify importance of predictors in each model. The heat map was used to investigate the correlation of features. Finally, we established a web calculator using the best-performing model. RESULTS: In multivariate logistic regression analysis, factors including alcoholic liver disease (ALD), smoking, boundary, diameter, and white blood cell (WBC) were identified as independent predictors for LNM in patients with ICC. In internal validation, the average values of AUC of six models ranged from 0.820 to 0.908. The XGB model was identified as the best model, the average AUC was 0.908. Finally, we established a web calculator by XGB model, which was useful for clinicians to calculate the likelihood of LNM. CONCLUSION: The proposed ML-based predicted models had a good performance to predict LNM of patients with ICC. XGB performed best. A web calculator based on the ML algorithm showed promise in assisting clinicians to predict LNM and developed individualized medical plans.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Metástase Linfática , Modelos Estatísticos , Prognóstico , Aprendizado de Máquina , Ductos Biliares Intra-Hepáticos
2.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385990

RESUMO

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Receptores da Neurocinina-1 , Masculino , Humanos , Receptores da Neurocinina-1/genética , Aurora Quinase A , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Quinase C-alfa , Transdução de Sinais , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética
3.
PLoS Pathog ; 19(5): e1011304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146061

RESUMO

Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.


Assuntos
Infecções por Citomegalovirus , Glioblastoma , Receptor EphA2 , Humanos , Proteínas do Envelope Viral/metabolismo , Glioblastoma/genética , Citomegalovirus/fisiologia , Receptor EphA2/genética
4.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058447

RESUMO

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Assuntos
Glioma , Proteínas Imediatamente Precoces , Animais , Humanos , Camundongos , Citomegalovirus/fisiologia , Regulação para Baixo , Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Virol Sin ; 38(3): 373-379, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940800

RESUMO

Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Neurônios
6.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753521

RESUMO

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiologia , Interleucina-6/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Células-Tronco , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
7.
Cell Death Dis ; 13(1): 41, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013118

RESUMO

Despite the great advances in target therapy, lung cancer remains the top cause of cancer-related death worldwide. G protein-coupled receptor neurokinin-1 (NK1R) is shown to play multiple roles in various cancers; however, the pathological roles and clinical implication in lung cancer are unclarified. Here we identified NK1R as a significantly upregulated GPCR in the transcriptome and tissue array of human lung cancer samples, associated with advanced clinical stages and poor prognosis. Notably, NK1R is co-expressed with epidermal growth factor receptor (EGFR) in NSCLC patients' tissues and co-localized in the tumor cells. NK1R can crosstalk with EGFR by interacting with EGFR, transactivating EGFR phosphorylation and regulating the intracellular signaling of ERK1/2 and Akt. Activation of NK1R promotes the proliferation, colony formation, EMT, MMP2/14 expression, and migration of lung cancer cells. The inhibition of NK1R by selective antagonist aprepitant repressed cell proliferation and migration in vitro. Knockdown of NK1R significantly slowed down the tumor growth in nude mice. The sensitivity of lung cancer cells to gefitinib/osimertinib is highly increased in the presence of the selective NK1R antagonist aprepitant. Our data suggest that NK1R plays an important role in lung cancer development through EGFR signaling and the crosstalk between NK1R and EGFR may provide a potential therapeutic target for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores da Neurocinina-1/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Receptores da Neurocinina-1/genética , Transdução de Sinais
8.
J Virol ; 96(2): e0147621, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730396

RESUMO

Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.


Assuntos
Citomegalovirus/fisiologia , Proteômica , Ativação Viral , Latência Viral , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , Ontologia Genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais
9.
Acad Radiol ; 29 Suppl 3: S44-S51, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33504445

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to explore conventional MRI features that can accurately differentiate central nervous system embryonal tumor, not otherwise specified (CNS ETNOS) from glioblastoma (GBM) in adults. MATERIALS AND METHODS: Preoperative conventional MRI images of 30 CNS ETNOS and 98 GBMs were analyzed by neuroradiologists retrospectively to identify valuable MRI features. Five blinded neuroradiologists independently reviewed all these MRI images, and scored MRI features on a five-point scale. Kendall's coefficient of concordance was used to measure inter-rater agreement. Diagnostic value was assessed by the area under the curve (AUC) of receiver operating curve, and sensitivity and specificity were also calculated. RESULTS: Seven MRI features, including isointensity on T1WI, T2WI, and FLAIR, ill-defined margin, severe peritumoral edema, ring enhancement, and broad-based attachment sign, were helpful for the differential diagnosis of these two entities. Among these features, ring enhancement showed the highest inter-rater concordance (0.80). Ring enhancement showed the highest AUC value (0.79), followed by severe peritumoral edema (0.67). The combination of seven features showed the highest AUC value (0.86), followed by that of three features (ill-defined margin, severe peritumoral edema, and ring enhancement) (0.83). CONCLUSION: Enhancement pattern, peritumoral edema, and margin are valuable for the discrimination between CNS ETNOS and GBM in adults.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Margens de Excisão , Estudos Retrospectivos
10.
Analyst ; 146(18): 5517-5527, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515714

RESUMO

Reactive sulfur species (RSS) play pivotal roles in various pathological and physiological processes. There exists an intricate relevance in generation and metabolism among these substances. Although they are nucleophilic, there are still some differences in their reactivity. There are many methods to detect them by using reactive fluorescent probes, but the systematic study of their reactivity is still lacking. In our study, we designed a multiple reaction site fluorescent probe based on benzene conjugated benzopyrylium and NBD. The study revealed that besides both biothiols and hydrogen sulfide, sulfur dioxide (SO2) can cleave the ether bond. There are two reaction forms for GSH with low reactivity: cutting the ether bond and adding the conjugated double bond of benzopyrylium. Nevertheless, Cys/Hcy with higher activity can further rearrange with NBD after cutting the ether bond. In addition, SO2 can not only cleave the ether bond, but also continue to add the conjugated double bond of benzopyrylium. The above processes lead to multicolor emission of the probe, thus realizing the characteristic analysis of different sulfides. Thus the probe can be used for the detection of sulfide in mitochondria, and further for the imaging of sulfide in cells and zebrafish. This effective analysis method will provide a broad application prospect for practical applications.


Assuntos
Cisteína , Sulfeto de Hidrogênio , Animais , Corantes Fluorescentes , Glutationa , Células HeLa , Homocisteína , Humanos , Sulfetos , Peixe-Zebra
11.
Eur J Pharmacol ; 908: 174346, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34270985

RESUMO

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.


Assuntos
Gefitinibe , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Humanos , Neoplasias Pulmonares
12.
J Magn Reson Imaging ; 54(5): 1541-1550, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34085336

RESUMO

BACKGROUND: Preoperative, noninvasive discrimination of the craniopharyngioma subtypes is important because it influences the treatment strategy. PURPOSE: To develop a radiomic model based on multiparametric magnetic resonance imaging for noninvasive discrimination of pathological subtypes of craniopharyngioma. STUDY TYPE: Retrospective. POPULATION: A total of 164 patients from two medical centers were enrolled in this study. Patients from the first medical center were divided into a training cohort (N = 99) and an internal validation cohort (N = 33). Patients from the second medical center were used as the external independent validation cohort (N = 32). FIELD STRENGTH/SEQUENCE: Axial T1 -weighted (T1 -w), T2 -weighted (T2 -w), contrast-enhanced T1 -weighted (CET1 -w) on 3.0 T or 1.5 T magnetic resonance scanners. ASSESSMENT: Pathological subtypes (squamous papillary craniopharyngioma and adamantinomatous craniopharyngioma) were confirmed by surgery and hematoxylin and eosin staining. Optimal radiomic feature selection was performed by SelectKBest, the least absolute shrinkage and selection operator algorithm, and support vector machine (SVM) with a recursive feature elimination algorithm. Models based on each sequence or combinations of sequences were built using a SVM classifier and used to differentiate pathological subtypes of craniopharyngioma in the training cohort, internal validation, and external validation cohorts. STATISTICAL TESTS: The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance of the radiomic models. RESULTS: Seven texture features, three from T1 -w, two from T2 -w, and two from CET1 -w, were selected and used to construct the radiomic model. The AUC values of the radiomic model were 0.899, 0.810, and 0.920 in the training cohort, internal and external validation cohorts, respectively. The AUC values of the clinicoradiological model were 0.677, 0.655, and 0.671 in the training cohort, internal and external validation cohorts, respectively. DATA CONCLUSION: The model based on radiomic features from T1 -w, T2 -w, and CET1 -w has a high discriminatory ability for pathological subtypes of craniopharyngioma. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: 2.


Assuntos
Craniofaringioma , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias Hipofisárias , Craniofaringioma/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neoplasias Hipofisárias/diagnóstico por imagem , Estudos Retrospectivos
14.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086565

RESUMO

The edible and medicinal part of Inula nervosa Wall. (Xiaoheiyao) is confined to its root without sufficient phytochemical and biological investigation. In this study, the secondary metabolites of root, stem, leaf, and flower of I. nervosa Wall. were visualized using Global Natural Products Social Molecular Networking (GNPS), MolNetEnhancer, XCMS(xcmsonline.scripps.edu) analysis, and `ili mapping based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) data to reveal their chemical differences. Among the 11 kinds of chemical repertoires annotated by MolNetEnhancer and 16 hits against the GNPS library, 10-isobutyryloxy-8,9-epoxythymol isobutyrate (1) was revealed as the most dominant and responsible marker between the roots and the other parts. Moreover, a battery of unique MS features as well as differential markers were discovered from different parts of the plant. The chemical differences contribute to the bioactivity differences, which presented in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH)assay and H2O2-insulted HepG2 cells and were in significant correlations with the contents of 1. real-time reverse transcription polymerase chain reaction (RT-PCR)results demonstrated that I. nervosa Wall. extracts upregulated the mRNA expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), manganese superoxide dismutase (MnSOD), and glutamate-cysteine ligase catalytic subunit (GCLC) actors involved in antioxidative response in H2O2-challenged HepG2 cells. These findings support the roots of I. nervosa Wall. as active parts of Xiaoheiyao, and also indicate the potential antioxidant activities of other parts.


Assuntos
Inula/genética , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Elementos de Resposta Antioxidante/genética , Antioxidantes/química , Produtos Biológicos/farmacologia , Compostos de Bifenilo/farmacologia , Flores/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Heme Oxigenase-1/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Inula/química , NAD(P)H Desidrogenase (Quinona)/genética , Picratos/farmacologia , Extratos Vegetais/química , Superóxido Dismutase/genética
15.
Medicine (Baltimore) ; 99(37): e21862, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32925723

RESUMO

This study aimed to compare the early outcome of proximal femoral nail antirotation (PFNA) and bipolar hemiarthroplasty (BPH) in elderly intertrochanteric fractures (ITFs) patients aged 85 years or more.This is a prospective cohort study, and we analyzed 120 elderly patients aged 85 years or more presented with ITFs who underwent BPH and PFNA between January 2017 and July 2018. 84 patients treated with PFNA were set as Group A, and 36 patients treated with BPH were set as Group B. Data such as gender, age, period of follow-up, fracture classification (according to Evans-Jensen classification), preoperative ASA (American Society of Anesthesiologists) physical status, interval between injury and operation, method of anaesthesia, duration of operation time, blood loss during surgery, time of weight bearing after operation, incidence of complications 2 weeks after operation, mortality rates and Harris Hip Score 12 months after operation were recorded and compared.There are no statistically significant differences when compared general data in patients from group A and B (P > .05). Operation time in Group A is less than Group B (103.33, 40-230 min vs 122.64, 75-180 minute, P < .01). Blood loss during surgery in Group A is less than Group B (70.24, 50-100 mL vs 194.44, 100-500 mL, P < .01). Time of weight bearing after operation in Group A is longer than Group B (50.70, 7-100 days vs 6.67, 4-14 days, P < .01). Incidence of complications 2 weeks after operation in Group A is less than Group B (14.12% vs 36.11%, P < .01). Mortality rates 12 months after operation in Group A is similar with Group B (13.10% vs 19.44%, P > .05). Harris Hip Score 12 months after operation in Group A is similar with Group B (64.64,0-91 points vs 64.41, 0-90 points, P > .05).Although BPH and PFNA have similar functional outcome and mortality rates 12 months after operation, BPH has more postoperative complications in elderly patients aged 85 years or more with ITFs, Bipolar Hemiarthroplasty should not be selected as the primary option for ITFs in elderly patients aged 85 years or more.


Assuntos
Fixação Intramedular de Fraturas/mortalidade , Hemiartroplastia/mortalidade , Fraturas do Quadril/cirurgia , Complicações Pós-Operatórias/mortalidade , Idoso de 80 Anos ou mais , Pinos Ortopédicos , Feminino , Fixação Intramedular de Fraturas/métodos , Avaliação Geriátrica , Hemiartroplastia/métodos , Fraturas do Quadril/mortalidade , Humanos , Masculino , Duração da Cirurgia , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Resultado do Tratamento
16.
Ann Transl Med ; 8(6): 373, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355817

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary bone tumors diagnosed in children and adolescents. Recent studies have shown a prognostic role of DNA methylation in various cancers, including OS. The aim of this study was to identify the aberrantly methylated genes that are prognostically relevant in OS. METHODS: The differentially expressed mRNAs, miRNAs and methylated genes (DEGs, DEMs and DMGs respectively) were screened from various GEO databases, and the potential target genes of the DEMs were predicted by the RNA22 program. The protein-protein interaction (PPI) networks were constructed using the STRING database and visualized by Cytoscape software. The functional enrichment and survival analyses of the screened genes was performed using the R software. RESULTS: Forty-seven downregulated hypermethylated genes and three upregulated hypomethylated genes were identified that were enriched in cell activation, migration and proliferation functions, and were involved in cancer-related pathways like JAK-STAT and PI3K-AKT. Eight downregulated hypermethylated tumor suppressor genes (TSGs) were identified among the screened genes based on the TSGene database. These hub genes are likely involved in OS genesis, progression and metastasis, and are potential prognostic biomarkers and therapeutic targets. CONCLUSIONS: TSGs including PYCARD, STAT5A, CXCL12 and CXCL14 were aberrantly methylated in OS, and are potential prognostic biomarkers and therapeutic targets. Our findings provide new insights into the role of methylation in OS progression.

17.
Chin J Integr Med ; 26(11): 873-880, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32328867

RESUMO

Saposhnikovia divaricata (Turcz.) Schischk., a perennial herb belonging to the family Umbelliferae, is widely distributed in Northeast Asia. Its dried root (Radix Saposhnikoviae) is used as a Chinese herbal medicine for the treatment of immune system, nervous system, and respiratory diseases. Phytochemical and pharmacological studies have shown that the main constituents of S. divaricata are chromones, coumarins, acid esters, and polyacetylenes, and these compounds exhibited significant anti-inflammatory, analgesic, antioxidant, antiproliferative, antitumor, and immunoregulatory activities. The purpose of this review is to provide comprehensive information on the botanical characterization and distribution, traditional use and ethnopharmacology, phytochemistry, and pharmacology of S. divaricata for further study concerning its mechanism of action and development of better therapeutic agents and health products from S. divaricata.


Assuntos
Apiaceae , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , China , Etnofarmacologia , Raízes de Plantas
19.
Eur J Pharmacol ; 874: 172961, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044322

RESUMO

The tyrosine kinase inhibitor (TKI) gefitinib exerts good therapeutic effect on NSCLC patients with sensitive EGFR-activating mutations. However, most patients ultimately relapse due to the development of drug resistance after 6-12 months of treatment. Here, we showed that a HIF-1α inhibitor, YC-1, potentiated the antitumor efficacy of gefitinib by promoting EGFR degradation in a panel of human NSCLC cells with wild-type or mutant EGFRs. YC-1 alone had little effect on NSCLC cell survival but significantly enhanced the antigrowth and proapoptotic effects of gefitinib. In insensitive NSCLC cell lines, gefitinib efficiently inhibited the phosphorylation of EGFR but not the downstream signaling of ERK, AKT and STAT3; however, when combined with YC-1 treatment, these signaling pathways were strongly impaired. Gefitinib treatment induced EGFR arrest in the early endosome, and YC-1 treatment promoted delayed EGFR transport into the late endosome as well as receptor degradation. Moreover, the YC-1-induced reduction of HIF-1α protein was associated with the enhancement of EGFR degradation. HIF-1α knockdown promoted EGFR degradation, showing synergistic antigrowth and proapoptotic effects similar to those of the gefitinib and YC-1 combination treatment in NSCLC cells. Our findings provide a novel combination treatment strategy with gefitinib and YC-1 to extend the usage of gefitinib and overcome gefitinib resistance in NSCLC patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/farmacologia , Indazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
20.
Talanta ; 205: 120070, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450480

RESUMO

Pd0-mediated Tsuji-Trost reaction is a practical strategy to design fluorescent probes for carbon monoxide (CO) sensing, and in such reaction CO can reduce Pd2+ to Pd0 in-situ and remove allyl groups on fluorophores. In most of these probes, esters are commonly used to link allyl on fluorophores. We found that the ester groups could be hydrolyzed by esterase activity of fetal bovine serum (FBS), while FBS is a requisite in cell culture, and the hydrolysis could interfere the Pd0-mediated Tsuji-Trost reaction. In this study, we synthesized a fluorescent probe (Cou-CO) using allyl ether as reaction site rather than allyl ester. Cou-CO is non-fluorescence, and could react with CO under the presence of Pd0 to form Cou with strong fluorescence, and the maximum excitation and emission wavelengths of Cou are 464 nm and 495 nm respectively. Cou-CO shows excellent selectivity to CO and could avoid the effect of FBS with the limit of detection for CO is 78 nm. Finally, Cou-CO was successfully applied for imaging of CO in living cells.


Assuntos
Compostos Alílicos/química , Monóxido de Carbono/análise , Ésteres/química , Éteres/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Compostos Alílicos/síntese química , Compostos Alílicos/toxicidade , Monóxido de Carbono/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Cebolas/química , Sensibilidade e Especificidade , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA