Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(8): 168500, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401626

RESUMO

Programmed cell death 1 ligand 2 (PD-L2), a member of the B7 immune checkpoint protein family, emerges as a crucial player in immune modulation. Despite its functional overlap with programmed cell death 1 ligand 1 (PD-L1) in binding to the programmed cell death protein 1 (PD-1) on T cells, PD-L2 exhibits a divergent expression pattern and a higher affinity for PD-1. However, the regulatory mechanisms of PD-L2 remain under-explored. Here, our investigations illustrate the pivotal role of cholesterol in modulating PD-L2 stability. Using advanced nuclear magnetic resonance (NMR) and biochemical analyses, we demonstrate a direct and specific binding between cholesterol and PD-L2, mediated by an F-xxx-V-xx-LR motif in its transmembrane domain, distinct from that in PD-L1. This interaction stabilizes PD-L2 and prevents its downstream degradation. Disruption of this binding motif compromises PD-L2's cellular stability, underscoring its potential significance in cancer biology. These findings not only deepen our understanding of PD-L2 regulation in the context of tumors, but also open avenues for potential therapeutic interventions.


Assuntos
Colesterol , Proteína 2 Ligante de Morte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Domínios Proteicos , Linfócitos T/metabolismo , Células HEK293 , Humanos , Estabilidade Proteica , Proteína 2 Ligante de Morte Celular Programada 1/química , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Colesterol/química , Colesterol/metabolismo
2.
Cancer Immunol Immunother ; 72(5): 1301-1313, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36436020

RESUMO

Adoptive cell therapy (ACT) with expanded tumor-infiltrating lymphocytes (TIL) or TCR gene-modified T cells (TCR-T) that recognize mutant KRAS neo-antigens can mediate tumor regression in patients with advanced pancreatic ductal adenocarcinoma (PDAC) (Tran et al in N Engl J Med, 375:2255-2262, 2016; Leidner et al in N Engl J Med, 386:2112-2119, 2022). The mutant KRAS-targeted ACT holds great potential to achieve durable clinical responses for PDAC, which has had no meaningful improvement over 40 years. However, the wide application of mutant KRAS-centric ACT is currently limited by the rarity of TIL that recognize the mutant KRAS. In addition, PDAC is generally recognized as a poorly immunogenic tumor, and TILs in PDAC are less abundant than in immunogenic tumors such as melanoma. To increase the success rate of TIL production, we adopted a well-utilized K562-based artificial APC (aAPC) that expresses 4-1BBL as the costimulatory molecules to enhance the TIL production from PDCA. However, stimulation with K562-based aAPC led to a rapid loss of specificity to mutant KRAS. To selectively expand neo-antigen-specific T cells, particularly mKRAS, from the TILs, we used tandem mini gene-modified autologous T cells (TMG-T) as the novel aAPC. Using this modified IVS protocol, we successfully generated TIL cultures specifically reactive to mKRAS (G12V). We believe that autologous TMG-T cells provide a reliable source of autologous APC to expand a rare population of neoantigen-specific T cells in TILs.


Assuntos
Melanoma , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Células Apresentadoras de Antígenos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Mutação , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas
3.
Sci Adv ; 8(34): eabq4722, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36026448

RESUMO

Cholesterol, an essential molecule for cell structure, function, and viability, plays crucial roles in the development, progression, and survival of cancer cells. Earlier studies have shown that cholesterol-lowering drugs can inhibit the high expression of programmed-death ligand 1 (PD-L1) that contributes to immunoevasion in cancer cells. However, the regulatory mechanism of cell surface PD-L1 abundance by cholesterol is still controversial. Here, using nuclear magnetic resonance and biochemical techniques, we demonstrated that cholesterol can directly bind to the transmembrane domain of PD-L1 through two cholesterol-recognition amino acid consensus (CRAC) motifs, forming a sandwich-like architecture and stabilizing PD-L1 to prevent downstream degradation. Mutations at key binding residues prohibit PD-L1-cholesterol interactions, decreasing the cellular abundance of PD-L1. Our results reveal a unique regulatory mechanism that controls the stability of PD-L1 in cancer cells, providing an alternative method to overcome PD-L1-mediated immunoevasion in cancers.


Assuntos
Antígeno B7-H1 , Neoplasias , Colesterol , Humanos
4.
Nat Commun ; 12(1): 5106, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429434

RESUMO

The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies.


Assuntos
Antígeno B7-H1/metabolismo , Membranas/metabolismo , Eletricidade Estática , Antígeno B7-H1/química , Antígeno B7-H1/genética , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2 , Células HEK293 , Humanos , Imunoterapia , Metformina , Mutação
5.
Protein Expr Purif ; 179: 105803, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33253810

RESUMO

Transmembrane and coiled-coil domains 1 (TMCO1) has a highly conserved amino acid sequence among species, indicating a critical role of TMCO1 in cell physiology. The deficiency of TMCO1 in humans is associated with cerebrofaciothoracic dysplasia (CFTD), glaucoma, osteogenesis and the occurrence of cancer. TMCO1 was recently identified as an endoplasmic reticulum (ER) Ca2+ load-activated Ca2+ (CLAC) release channel, which prevents ER Ca2+ overload and maintains calcium homeostasis in the ER. However, the structural basis of the molecular function of TMCO1 channel remains elusive. To determine the structure of TMCO1, we screened the expression of TMCO1 in Escherichia coli and insect cell expression systems. TMCO1 from Dictyostelium discoideum (DdTMCO1) was successfully expressed in Escherichia coli with a high yield. The pure recombinant protein was obtained by affinity chromatography and size exclusion chromatography. The solution NMR of DdTMCO1 in DPC micelles showed three α-helical transmembrane regions.


Assuntos
Canais de Cálcio , Proteínas Recombinantes , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/isolamento & purificação , Canais de Cálcio/metabolismo , Dictyostelium/genética , Escherichia coli/genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
6.
FEBS Lett ; 592(10): 1625-1633, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29710391

RESUMO

The AAA ATPase spastin is a microtubule-severing enzyme that plays important roles in various cellular events including axon regeneration. Herein, we found that the basal ATPase activity of spastin is negatively regulated by spastin concentration. By determining a spastin crystal structure, we demonstrate the necessity of intersubunit interactions between spastin AAA domains. Neutralization of the positive charges in the microtubule-binding domain (MTBD) of spastin dramatically decreases the ATPase activity at low concentration, although the ATP-hydrolyzing potential is not affected. These results demonstrate that, in addition to the AAA domain, the MTBD region of spastin is also involved in regulating ATPase activity, making interactions between spastin protomers more complicated than expected.


Assuntos
Adenosina Trifosfatases/metabolismo , Espastina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Microtúbulos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos , Espastina/química
7.
FEBS J ; 280(16): 3868-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23745751

RESUMO

Spastin is an AAA (ATPase associated with diverse cellular activities) protein with microtubule (MT)-severing activity. The spastin-encoding gene was identified as the most often mutated gene in the human neurodegenerative disease hereditary spastic paraplegia. Although the structure of the AAA domain of spastin has been determined, the mechanism by which spastin severs MTs remains elusive. Here, we studied the MT-binding and nucleotide-binding properties of spastin, as well as their interplay. The results suggest that ATP-bound spastin interacts strongly and cooperatively with MTs; this interaction stimulates ATP hydrolysis by spastin. After ATP hydrolysis, spastin dissociates from MTs, and then exchanges ADP for ATP in solution for the next round of work. In particular, spastin in the ternary complex of MT-spastin-ATP is the most cooperative state during the working cycle, and is probably the force-generating state that is responsible for MT severing. The results presented in this study establish the nucleotide cycle of spastin in correlation with its MT-binding properties, and provide a biochemical framework for further studies of the working mechanism of spastin.


Assuntos
Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Difosfato de Adenosina/análogos & derivados , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/análogos & derivados , Marcadores de Afinidade/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Polarização de Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Hidrólise , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Espastina , ortoaminobenzoatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA