Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010310

RESUMO

As a traditional Chinese medicine (TCM), Epimedii folium (EF) has a history in medicine and food that is > 2,000 years old. Clinically, EF processed with mutton oil is often used as a medicine. In recent years, reports of safety risks and adverse reactions of products that use EF as a raw material have gradually increased. Processing can effectively improve the safety of TCM. According to TCM theory, mutton-oil processing can reduce the toxicity of EF and enhance its tonifying effect on the kidneys. However, there is a lack of systematic research and evaluation of EF mutton-oil processing technology. In this study, we used the Box-Behnken experimental design-response surface methodology to optimize the key parameters of the processing technology by assessing the contents of multiple components. The results showed that the optimal mutton-oil processing technology of EF was as follows: heating the mutton oil at 120 °C ± 10 °C, adding the crude EF, stir-frying it gently to 189 °C ± 10 °C until it is evenly shiny, and then removing it and cool. For every 100 kg of EF, 15 kg of mutton oil should be used. The toxicities and teratogenicities of an aqueous extract of crude and mutton-oil processed EF were compared in a zebrafish embryo developmental model. The results showed that the crude herb group was more likely to cause zebrafish deformities, and its half-maximal lethal EF concentration was lower. In conclusion, the optimized mutton-oil processing technology was stable and reliable, with good repeatability. At a certain dose, the aqueous extract of EF was toxic to the development of zebrafish embryos, and the toxicity was stronger for the crude drug than for the processed drug. The results showed that mutton-oil processing reduced the toxicity of crude EF. These findings can be used to improve the quality, uniformity, and clinical safety of mutton oil-processed EF.


Assuntos
Medicamentos de Ervas Chinesas , Peixe-Zebra , Animais , Medicina Tradicional Chinesa , Tecnologia
2.
J Sci Food Agric ; 103(7): 3390-3401, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36754603

RESUMO

BACKGROUND: Cyclophosphamide (CTX) is a widely used chemotherapeutic agent for the treatment of malignant tumors and autoimmune diseases. However, it can cause immunosuppression and damage the intestinal mucosa. The development of new agents to counteract these side effects is becoming increasingly important. Previous studies have shown that the polysaccharides from Gastrodia elata (GEPs) have strong immune-enhancing effects; however, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the effects of GEPs on immunomodulatory activity, intestinal barrier function, and gut microbiota regulation were investigated in a mouse model of CTX-induced immunosuppression. RESULTS: Gastrodia elata polysaccharides attenuated the CTX-induced decrease in organ indices of the thymus and spleen, and promoted the secretion of immune-related cytokines and immunoglobulins in the serum. They also improved the intestinal pathology and restored the intestinal barrier function by elevating the expression of intestinal tight junction proteins, occludin and ZO-1. Moreover, GEPs restored the composition and abundance of the gut microbiota and increased the short-chain fatty acid (SCFA) content in the colon. The abundance of SCFA-producing bacteria (Muribaculaceae, Prevotellaceae, and Bacteroidaceae) also increased. CONCLUSIONS: Gastrodia elata polysaccharides can effectively alleviate immunosuppression and regulate the intestinal barrier integrity and the structure of gut microbiota in CTX-treated mice. They may be used as ingredients to develop functional foods for intestinal health. © 2023 Society of Chemical Industry.


Assuntos
Gastrodia , Microbioma Gastrointestinal , Camundongos , Animais , Gastrodia/química , Ciclofosfamida/efeitos adversos , Intestinos , Polissacarídeos/farmacologia , Polissacarídeos/química
3.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533835

RESUMO

The occurrence of non-alcoholic fatty liver disease (NAFLD) has been increasing at an alarming rate worldwide. Platycodon grandiflorum is widely used as a traditional ethnomedicine for the treatment of various diseases and is a typical functional food that can be incorporated into the everyday diet. Studies have suggested that platycodin D (PD), one of the main active ingredients in Platycodon grandiflorum, has high bioavailability and significantly mitigates the progress of NAFLD, but the underlying mechanism of this is still unclear. This study aims to investigate the therapeutic effect of PD against NAFLD in vitro. AML-12 cells were pretreated with 300 µM palmitic acid (PA) for 24 h to model NAFLD in vitro. Then, the cells were either treated with PD or received no PD treatment for 24 h. The levels of reactive oxygen species (ROS) were analyzed using 2',7'-dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining, and the mitochondrial membrane potential was determined by the JC-1 staining method. Moreover, the protein expression levels of LC3-II/LC3-I and p62/SQSTM1 in the cell lysates were analyzed by western blotting. PD was found to significantly decrease the ROS and mitochondrial membrane potential levels in the PA-treated group compared to the control group. Meanwhile, PD increased the LC3-II/LC3-I levels and decreased the p62/SQSTM1 levels in the PA-treated group compared to the control group. The results indicated that PD ameliorated NAFLD in vitro by reducing oxidative stress and stimulating autophagy. This in vitro model is a useful tool for studying the role of PD in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Platycodon , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Platycodon/metabolismo , Fígado/metabolismo
4.
Poult Sci ; 99(12): 6647-6652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248580

RESUMO

To determine the role of glycoprotein I (gI) in duck plague virus (DPV), a gI-deleted mutant (BAC-CHv-ΔgI) and a gI-revertant virus (BAC-CHv-ΔgI Rev) were constructed by using a markerless two-step Red recombination system implemented on the DPV genome cloned into a bacterial artificial chromosome (BAC). Mutants were characterized on duck embryo fibroblast (DEF) cells compared with wild-type virus. BAC-CHv-ΔgI produced viral plaques on DEF cells that were on average approximately 57.2% smaller than those produced by BAC-CHv-ΔgI Rev and wild-type virus. Electron microscopy confirmed that deleting of gI resulted in nucleocapsids accumulated around the cytoplasm vesicles and few of them could complete the final envelopment process. These results clearly indicated that DPV gI plays significant roles in viral cell-cell spread and viral final envelopment process.


Assuntos
Patos , Glicoproteínas , Mardivirus , Doença de Marek , Animais , Células Cultivadas , Cromossomos Artificiais Bacterianos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Mardivirus/genética , Mardivirus/patogenicidade , Doença de Marek/transmissão , Doença de Marek/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
5.
Cells ; 9(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823751

RESUMO

The N-terminus of the hepatitis B virus (HBV) large surface protein (LHB) differs with respect to genotypes. Compared to the amino terminus of genotype (Gt)D, in GtA, GtB and GtC, an additional identical 11 amino acids (aa) are found, while GtE and GtG share another similar 10 aa. Variants of GtB and GtC affecting this N-terminal part are associated with hepatoma formation. Deletion of these amino-terminal 11 aa in GtA reduces the amount of LHBs and changes subcellular accumulation (GtA-like pattern) to a dispersed distribution (GtD-like pattern). Vice versa, the fusion of the GtA-derived N-terminal 11 aa to GtD causes a GtA-like phenotype. However, insertion of the corresponding GtE-derived 10 aa to GtD has no effect. Deletion of these 11aa decreases filament size while neither the number of released viral genomes nor virion size and infectivity are affected. A negative regulatory element (aa 2-8) and a dominant positive regulatory element (aa 9-11) affecting the amount of LHBs were identified. The fusion of this motif to eGFP revealed that the effect on protein amount and subcellular distribution is not restricted to LHBs. These data identify a novel region in the N-terminus of LHBs affecting the amount and subcellular distribution of LHBs and identify release-promoting and -inhibiting aa residues within this motive.


Assuntos
Genótipo , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/sangue , Morfogênese , Domínios Proteicos/genética , Precursores de Proteínas/genética , Proteínas do Envelope Viral/química , Vírion/crescimento & desenvolvimento , Adulto , Negro ou Afro-Americano/genética , Povo Asiático/genética , Linhagem Celular Tumoral , DNA Viral/sangue , Feminino , Hepatite B Crônica/etnologia , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Envelope Viral/metabolismo , População Branca/genética
6.
Future Microbiol ; 14: 1147-1157, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368347

RESUMO

Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.


Assuntos
Enterovirus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteínas Estruturais Virais/metabolismo , Internalização do Vírus , Replicação Viral , Humanos
7.
Virol J ; 16(1): 54, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036013

RESUMO

BACKGROUND: The picornaviral 3C protease mediates viral polyprotein maturation and multiple cleavages of host proteins to modulate viral translation and transcription. The 3C protease has been regarded as a valid target due to its structural similarity among different picornaviruses and minimal sequence similarity with host proteins; therefore, the development of potent inhibitors against the 3C protease as an antiviral drug is ongoing. Duck hepatitis A virus (DHAV) belongs to the Picornavidea family and is a major threat to the poultry industry. To date, little is known about the roles of the DHAV 3C protease plays during infection. METHODS: In this study, we compared the full-length DHAV 3C protein sequence with other 3C sequences to obtain an alignment for the construction of a phylogenetic tree. Then, we expressed and purified recombinant DHAV 3C protease in the BL21 expression system using nickel-NTA affinity chromatography. The optimization of the cleavage assay conditions and the kinetic analysis for DHAV 3C protease were done by in vitro cleavage assays with a fluorogenic peptide respectively. The inhibitory activity of rupintrivir against the DHAV 3C protease was further evaluated. The localization of the 3C protease in infected and transfected cells was determined using immunofluorescence and confocal microscopy. RESULTS: Under different expression conditions, the 3C protease was found to be highly expressed after induction with 1 mM IPTG at 16 °C for 10 h. We synthesized a fluorogenic peptide derived from the cleavage site of the DHAV polyprotein and evaluated the protease activity of the DHAV 3C protease for the first time. We used fluorimetric based kinetic analysis to determine kinetic parameters, and Vmax and Km values were determined to be 16.52 nmol/min and 50.78 µM, respectively. Rupintrivir was found to exhibit inhibitory activity against the DHAV 3C protease. Using polyclonal antibody and an indirect immunofluorescence microscopy assay (IFA), it was determined that the DHAV 3C protease was found in the nucleus during infection. In addition, the DHAV 3C protease can enter into the nucleus without the cooperation of viral proteins. CONCLUSIONS: This is the first study to examine the activity of the DHAV 3C protease, and the activity of the DHAV 3C protease is temperature-, pH- and NaCl concentration- dependent. The DHAV 3C protease localizes throughout DHAV-infected cells and can enter into the nucleus in the absence of other viral proteins. The kinetic analysis was calculated, and the Vmax and Km values were 16.52 nmol/min and 50.78 µM, respectively, using the Lineweaver-Burk plot.


Assuntos
Cisteína Endopeptidases/química , Vírus da Hepatite do Pato/enzimologia , Filogenia , Proteínas Virais/química , Proteases Virais 3C , Vírus da Hepatite do Pato/genética , Concentração de Íons de Hidrogênio , Isoxazóis/farmacologia , Cinética , Fenilalanina/análogos & derivados , Pirrolidinonas/farmacologia , Proteínas Recombinantes , Alinhamento de Sequência , Valina/análogos & derivados
8.
Sci Rep ; 7(1): 16261, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176600

RESUMO

During viral infections, some viruses subvert the host proteins to promote the translation or RNA replication with their protease-mediated cleavage. Poly (A)-binding protein (PABP) is a target for several RNA viruses; however, the impact of duck hepatitis A virus (DHAV) on PABP remains unknown. In this study, we demonstrated for the first time that DHAV infection stimulates a decrease in endogenous PABP and generates two cleavage fragments. On the basis of in vitro cleavage assays, an accumulation of PABP cleavage fragments was detected in duck embryo fibroblast (DEF) cell extracts incubated with functional DHAV 3C protease. In addition, DHAV 3C protease was sufficient for the cleavage of recombinant PABP without the assistance of other eukaryotic cellular cofactors. Furthermore, using site-directed mutagenesis, our data demonstrated a 3C protease cleavage site located between Q367 and G368 in duck PABP. Moreover, the knockdown of PABP inhibited the production of viral RNA, and the C-terminal domain of PABP caused a reduction in viral replication compared to the N-terminal domain. Taken together, these findings suggested that DHAV 3C protease mediates the cleavage of PABP, which may be a strategy to manipulate viral replication.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Hepatite A/enzimologia , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Patos , Replicação Viral/genética , Replicação Viral/fisiologia
9.
Future Microbiol ; 10(9): 1529-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26343779

RESUMO

Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus-host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.


Assuntos
Infecções por Enterovirus/terapia , Infecções por Enterovirus/virologia , Enterovirus/patogenicidade , Proteínas Estruturais Virais/fisiologia , Animais , Antivirais/uso terapêutico , Proteínas do Capsídeo/fisiologia , Enterovirus/química , Interações Hospedeiro-Patógeno , Humanos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA