Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1379777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504985

RESUMO

CD8+ T cells are critical mediators of pathogen clearance and anti-tumor immunity. Although signaling pathways leading to the activation of NF-κB transcription factors have crucial functions in the regulation of immune responses, the CD8+ T cell-autonomous roles of the different NF-κB subunits, are still unresolved. Here, we investigated the function of the ubiquitously expressed transcription factor RelA in CD8+ T-cell biology using a novel mouse model and gene-edited human cells. We found that CD8+ T cell-specific ablation of RelA markedly altered the transcriptome of ex vivo stimulated cells, but maintained the proliferative capacity of both mouse and human cells. In contrast, in vivo experiments showed that RelA deficiency did not affect the CD8+ T-cell response to acute viral infection or transplanted tumors. Our data suggest that in CD8+ T cells, RelA is dispensable for their protective activity in pathological contexts.


Assuntos
Neoplasias , Viroses , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/metabolismo , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Viroses/metabolismo
2.
Cell Rep ; 42(10): 113230, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815917

RESUMO

T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.


Assuntos
Interleucina-17 , Receptores de Antígenos de Linfócitos T gama-delta , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Camundongos Endogâmicos C57BL , Linfócitos T , Timo , Subpopulações de Linfócitos T , Proteínas Proto-Oncogênicas c-maf
4.
Sci Rep ; 6: 37651, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883012

RESUMO

Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Perfilação da Expressão Gênica , Memória Imunológica/genética , Baço/citologia , Animais , Linfócitos T CD8-Positivos/virologia , Quimiocinas/genética , Quimiocinas/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Família Multigênica , Orthomyxoviridae/fisiologia , Peptídeos/imunologia , Fenótipo , Análise de Componente Principal , Especificidade da Espécie
5.
PLoS Pathog ; 7(9): e1002231, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909275

RESUMO

Alteration of early haematopoietic development is thought to be responsible for the onset of immature leukemias and lymphomas. We have previously demonstrated that Tax(HTLV-1) interferes with ß-selection, an important checkpoint of early thymopoiesis, indicating that human T-cell leukemia virus type 1 (HTLV-1) infection has the potential to perturb thymic human αß T-cell development. To verify that inference and to clarify the impact of HTLV-1 infection on human T-cell development, we investigated the in vivo effects of HTLV-1 infection in a "Human Immune System" (HIS) Rag2⁻/⁻γ(c)⁻/⁻ mouse model. These mice were infected with HTLV-1, at a time when the three main subpopulations of human thymocytes have been detected. In all but two inoculated mice, the HTLV-1 provirus was found integrated in thymocytes; the proviral load increased with the length of the infection period. In the HTLV-1-infected mice we observed alterations in human T-cell development, the extent of which correlated with the proviral load. Thus, in the thymus of HTLV-1-infected HIS Rag2⁻/⁻γc⁻/⁻ mice, mature single-positive (SP) CD4⁺ and CD8⁺ cells were most numerous, at the expense of immature and double-positive (DP) thymocytes. These SP cells also accumulated in the spleen. Human lymphocytes from thymus and spleen were activated, as shown by the expression of CD25: this activation was correlated with the presence of tax mRNA and with increased expression of NF-kB dependent genes such as bfl-1, an anti-apoptotic gene, in thymocytes. Finally, hepato-splenomegaly, lymphadenopathy and lymphoma/thymoma, in which Tax was detected, were observed in HTLV-1-infected mice, several months after HTLV-1 infection. These results demonstrate the potential of the HIS Rag2⁻/⁻γ(c)⁻/⁻ animal model to elucidate the initial steps of the leukemogenic process induced by HTLV-1.


Assuntos
Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Timócitos/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Infecções por HTLV-I/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia-Linfoma de Células T do Adulto/etiologia , Camundongos , Timócitos/virologia , Quimeras de Transplante/imunologia , Transplante Heterólogo , Carga Viral
6.
J Immunol ; 185(11): 6421-6425, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21037088

RESUMO

γδ T lymphocytes are commonly viewed as embracing properties of both adaptive and innate immunity. Contributing to this is their responsiveness to pathogen products, either with or without the involvement of the TCR and its coreceptors. This study clarifies this paradoxical behavior by showing that these two modes of responsiveness are the properties of two discrete sets of murine lymphoid γδ T cells. Thus, MyD88 deficiency severely impaired the response to malaria infection of CD27((-)), IL-17A-producing γδ T cells, but not of IFN-γ-producing γδ cells. Instead, the latter compartment was severely contracted by ablating CD27, which synergizes with TCRγδ in the induction of antiapoptotic mediators and cell cycle-promoting genes in CD27((+)), IFN-γ-secreting γδ T cells. Hence, innate versus adaptive receptors differentially control the peripheral pool sizes of discrete proinflammatory γδ T cell subsets during immune responses to infection.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interferon gama/biossíntese , Interleucina-17/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa/genética , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Imunidade Inata/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Rhadinovirus/imunologia , Transdução de Sinais/genética , Subpopulações de Linfócitos T/parasitologia , Subpopulações de Linfócitos T/virologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/deficiência , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia
7.
Front Biosci (Schol Ed) ; 1(1): 194-204, 2009 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-19482695

RESUMO

The regulatory Tax protein of HTLV-1 (Human T-cell Leukaemia Virus type 1) is critically involved in the initiation of ATL (adult T-cell leukaemia). Indeed, Tax provides infected T-cells with a growth advantage and with the potential to get transformed through the deregulation of cell-cycle progression and the acquisition of genetic alterations. Considering that leukemias are induced by disturbances in hematopoietic cells development, we hypothesize that the expression of Tax in human immature thymocytes is a prerequisite to the emergence of ATL cells. Studies of alph abeta T-cell development in the thymus have shown that beta-selection, an early important checkpoint, is regulated by transcription factors that are decisive in the control of cell proliferation, differentiation and survival. Interestingly, Tax is endowed with the ability to interfere with the activity of these transcription factors. We therefore propose that the HTLV-1 infection of these specific target thymocytes leads to a transcriptional deregulation of early alphabeta T cell development, thus inducing a pre-leukemogenic event that favours the subsequent proliferation of ATL cells.


Assuntos
Transformação Celular Neoplásica , Produtos do Gene tax/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Linfócitos T/citologia , Humanos
8.
J Virol ; 82(16): 7913-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18495761

RESUMO

The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is known to induce or repress various cellular genes, several of them encoding transcription factors. As Tax is known to deregulate various basic bHLH factors, we looked more specifically at its effect on TAL1 (T-cell acute lymphoblastic leukemia 1), also known as SCL (stem cell leukemia). Indeed, TAL1 is deregulated in a high percentage of T-cell acute lymphoblastic leukemia cells, and its oncogenic properties are well-established. Here we show that Tax induces transcription of this proto-oncogene by stimulating the activity of the TAL1 gene promoter 1b, through both the CREB and NF-kappaB pathways. It was also observed that TAL1 upregulates HTLV-1 promoter activity, in either the presence or the absence of Tax. The viral promoter is inhibited in trans by expression of the E2A protein E47, and TAL1 is able to abrogate this inhibition. These data show the existence of a positive feedback loop between Tax and TAL1 expression and support the notion that this proto-oncogene participates in generation of adult T-cell leukemia/lymphoma by increasing the amount of the Tax oncoprotein but also possibly by its own transforming activities.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas Proto-Oncogênicas/metabolismo , Sítios de Ligação , Linhagem Celular , Retroalimentação Fisiológica , Células HeLa , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Timo/citologia
9.
J Virol ; 81(1): 301-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050604

RESUMO

The human pre-T-cell receptor alpha (TCRalpha; pTalpha) gene encodes a polypeptide which associates with the TCRbeta chain and CD3 molecules to form the pre-TCR complex. The surface expression of the pre-TCR is pTalpha dependent, and signaling through this complex triggers an early alphabeta T-cell developmental checkpoint inside the thymus, known as beta-selection. E2A transcription factors, which are involved at multiple stages of T-cell development, regulate the transcription of the pTalpha gene. Here we show that the regulatory protein Tax of the human T-cell leukemia virus type 1 (HTLV-1) efficiently suppresses the E47-mediated activation of the pTalpha promoter. Furthermore, we report that in Tax lentivirally transduced human MOLT-4 T cells, which constitutively express the pTalpha gene, the amount of pTalpha transcripts decreases. Such a decrease is not observed in MOLT-4 cells transduced by a vector encoding the Tax mutant K88A, which is unable to interact with p300. These data underline that Tax inhibits pTalpha transcription by recruiting this coactivator. Finally, we show that the expression of Tax in human immature thymocytes results in a decrease of pTalpha gene transcription but does not modify the level of E47 transcripts. These observations indicate that Tax, by silencing E proteins, down-regulates pTalpha gene transcription during early thymocyte development. They further provide evidence that Tax can interfere with an important checkpoint during T-cell differentiation in the thymus.


Assuntos
Regulação para Baixo , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano , Glicoproteínas de Membrana/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Timo/imunologia , Diferenciação Celular/genética , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Luciferases/análise , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA