Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Platelets ; 33(1): 132-140, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347335

RESUMO

Blood flow through left ventricular assist devices (LVAD) may induce activation and dysfunction of platelets. Dysfunctional platelets cause coagulation disturbances and form platelet-neutrophil conjugates (PNC), which contribute to inflammatory tissue damage. This prospective observational cohort study investigated patients, who underwent implantation of a LVAD (either HeartMate II (HM II) (n = 7) or HeartMate 3 (HM 3) (n = 6)) and as control patients undergoing coronary artery bypass grafting (CABG) and/or aortic valve replacement (AVR) (n = 10). We performed platelet and leukocyte flow cytometry, analysis of platelet activation markers, and platelet aggregometry. Platelet CD42b expression was reduced at baseline and perioperatively in HM II/3 compared to CABG/AVR patients. After surgery the platelet activation marker ß-thromboglobulin and platelet microparticles increased in all groups while platelet aggregation decreased. Platelet aggregation was more significantly impaired in LVAD compared to CABG/AVR patients. PNC were higher in HM II compared to HM 3 patients. We conclude that LVAD implantation is associated with platelet dysfunction and proinflammatory platelet-leukocyte binding. These changes are less pronounced in patients treated with the newer generation LVAD HM 3. Future research should identify device-specific LVAD features, which are associated with the least amount of platelet activation to further improve LVAD therapy.


Assuntos
Transtornos Plaquetários/fisiopatologia , Plaquetas/metabolismo , Coração Auxiliar/normas , Neutrófilos/metabolismo , Estudos de Coortes , Humanos , Estudos Prospectivos
2.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575580

RESUMO

Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.

3.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576103

RESUMO

Tissue engineering offers auspicious opportunities in oral and maxillofacial surgery to heal bone defects. For this purpose, the combination of cells with stability-providing scaffolds is required. Jaw periosteal cells (JPCs) are well suited for regenerative therapies, as they are easily accessible and show strong osteogenic potential. In this study, we analyzed the influence of uncoated and polylactic-co-glycolic acid (PLGA)-coated ß-tricalcium phosphate (ß-TCP) scaffolds on JPC colonization and subsequent osteogenic differentiation. Furthermore, interaction with the human blood was investigated. This study demonstrated that PLGA-coated and uncoated ß-TCP scaffolds can be colonized with JPCs and further differentiated into osteogenic cells. On day 15, after cell seeding, JPCs with and without osteogenic differentiation were incubated with fresh human whole blood under dynamic conditions. The activation of coagulation, complement system, inflammation, and blood cells were analyzed using ELISA and scanning electron microscopy (SEM). JPC-seeded scaffolds showed a dense cell layer and osteogenic differentiation capacity on both PLGA-coated and uncoated ß-TCP scaffolds. SEM analyses showed no relevant blood cell attachment and ELISA results revealed no significant increase in most of the analyzed cell activation markers (ß-thromboglobulin, Sc5B-9, polymorphonuclear (PMN)-elastase). However, a notable increase in thrombin-antithrombin III (TAT) complex levels, as well as fibrin fiber accumulation on JPC-seeded ß-TCP scaffolds, was detected compared to the scaffolds without JPCs. Thus, this study demonstrated that besides the scaffold material the cells colonizing the scaffolds can also influence hemostasis, which can influence the regeneration of bone tissue.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Arcada Osseodentária/citologia , Periósteo/citologia , Alicerces Teciduais/química , Contagem de Células Sanguíneas , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Humanos , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
4.
Biomolecules ; 11(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356647

RESUMO

During surgical procedures, cotton abdominal swabs with their high absorptive capacity and malleability are used to retain organs and absorb blood or other body fluids. Such properties of the natural material cotton are advantageous for most operations, but in cardiopulmonary bypass (CPB) surgery, a high blood volume can accumulate in the thoracic cavity that is quickly retransfused via the heart-lung machine (HLM). This common practice is supposed to be safe due to the high anticoagulation. However, in vitro analyses showed that blood cells and plasma proteins were activated despite a high anticoagulation, which can propagate especially an inflammatory response in the patient. Thus, we investigated patients' blood during CPB surgery for inflammatory and coagulation-associated activation after contact to the HLM and either cotton or synthetic abdominal swabs. Contact with cotton significantly increased thrombocyte and neutrophil activation measured as ß-thromboglobulin and PMN-elastase secretion, respectively, compared to synthetic abdominal swabs. Both inflammatory cytokines, interleukin (IL) 1ß and IL6, were also significantly increased in the cotton over the synthetic patient group, while SDF-1α was significantly lower in the synthetic group. Our data show for the first time that cotton materials can activate platelets and leukocytes despite a high anticoagulation and that this activation is lower with synthetic materials. This additional activation due to the material on top of the activation exerted by the tissue contact that blood is exposed to during CPB surgery can propagate further reactions in patients after surgery, which poses a risk for this already vulnerable patient group.


Assuntos
Procedimentos Cirúrgicos Cardíacos/instrumentação , Ativação Plaquetária , Tampões Cirúrgicos , Têxteis , Idoso , Plaquetas/fisiologia , Procedimentos Cirúrgicos Cardíacos/métodos , Fibra de Algodão , Citocinas/sangue , Feminino , Máquina Coração-Pulmão , Humanos , Inflamação/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Tampões de Gaze Cirúrgicos
5.
ALTEX ; 38(3): 442-450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497462

RESUMO

The generation of autologous human induced pluripotent stem cells (hiPSCs) from a patient's somatic cells and the sub­sequent differentiation of these cells into desired cell types offer innovative treatment options for tissue regeneration. The hiPSCs obtained are usually implanted in immunodeficient mice, and teratoma formation is analyzed after 4 to 6 weeks to assess the cells' pluripotency. In this study, an alternative in vivo model based on chicken egg chorioallantoic membrane (CAM) was established to analyze the pluripotency of newly created hiPSCs. 0.5, 1, 2, 4 x 106 hiPSCs gen­erated from urine-derived renal epithelial cells were seeded on CAM and incubated for 9 days. Teratoma formation was detected in 70% of eggs inoculated with 2 x 106 hiPSCs and in 100% of eggs inoculated with 4 x 106 hiPSCs. All teratomas exhibited vascular structures. The robustness of the CAM model was confirmed using two additional hiPSC lines derived from human fibroblasts (NuFFs) or jaw periosteal cells. The presence of all three germ layers within the teratomas was successfully verified by histochemical and immunofluorescence staining and gene expression analysis of germ layer-specific markers. Urine-derived renal epithelial cells were used as negative control and showed no teratoma formation. The CAM-based in vivo model provides an optimal in vivo test environment for the pluripotency evaluation of newly generated hiPSC lines. This simple, fast, inexpensive and reproducible method reduces the suffering of animals and thus implements the principles of the 3Rs (replacement, reduction, and refinement).


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Fibroblastos , Humanos , Camundongos
6.
EBioMedicine ; 60: 102989, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32920368

RESUMO

BACKGROUND: Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS: We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS: Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION: Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING: This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.


Assuntos
Movimento Celular , Células-Tronco/fisiologia , Doença de Alzheimer/terapia , Animais , Biomarcadores , Sobrevivência Celular , Rastreamento de Células/métodos , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Terapia Viral Oncolítica , Transplante de Células-Tronco , Células-Tronco/citologia , Resultado do Tratamento
7.
EBioMedicine ; 60: 102987, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32942121

RESUMO

BACKGROUND: Limited knowledge of stem cell therapies` mechanisms of action hampers their sustainable implementation into the clinic. Specifically, the interactions of transplanted stem cells with the host vasculature and its implications for their therapeutic efficacy are not elucidated. We tested whether adhesion receptors and chemokine receptors on stem cells can be functionally modulated, and consequently if such modulation may substantially affect therapeutically relevant stem cell interactions with the host endothelium. METHODS: We investigated the effects of cationic molecule polyethylenimine (PEI) treatment with or without nanoparticles on the functions of adhesion receptors and chemokine receptors of human bone marrow-derived Mesenchymal Stem Cells (MSC). Analyses included MSC functions in vitro, as well as homing and therapeutic efficacy in rodent models of central nervous system´s pathologies in vivo. FINDINGS: PEI treatment did not affect viability, immunomodulation or differentiation potential of MSC, but increased the CCR4 expression and functionally blocked their adhesion receptors, thus decreasing their adhesion capacity in vitro. Intravenously applied in a rat model of brain injury, the homing rate of PEI-MSC in the brain was highly increased with decreased numbers of adherent PEI-MSC in the lung vasculature. Moreover, in comparison to untreated MSC, PEI-MSC featured increased tumour directed migration in a mouse glioblastoma model, and superior therapeutic efficacy in a murine model of stroke. INTERPRETATION: Balanced stem cell adhesion and migration in different parts of the vasculature and tissues together with the local microenvironment impacts their therapeutic efficacy. FUNDING: Robert Bosch Stiftung, IZEPHA grant, EU grant 7 FP Health.


Assuntos
Adesão Celular , Movimento Celular , Endotélio/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Microambiente Celular , Modelos Animais de Doenças , Glioma/diagnóstico , Glioma/patologia , Glioma/terapia , Humanos , Imunofenotipagem , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ratos , Transplante de Células-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Crit Care Med ; 48(5): e400-e408, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32118700

RESUMO

OBJECTIVES: Extracorporeal membrane oxygenation is used to stabilize severe cardiocirculatory and/or respiratory failure. However, extracorporeal membrane oxygenation is associated with a coagulopathy characterized by thromboembolic and hemorrhagic complications. This study aimed to characterize the pathomechanism of the extracorporeal membrane oxygenation-associated coagulopathy and identify options to optimize its monitoring and therapy. DESIGN: Prospective observational clinical trial. SETTING: ICU of a university hospital. PATIENTS: Patients treated with venovenous extracorporeal membrane oxygenation (n = 10) due to acute respiratory distress syndrome and patients treated with venoarterial extracorporeal membrane oxygenation (n = 8) due to cardiocirculatory failure. One patient per group (venovenous extracorporeal membrane oxygenation or venoarterial extracorporeal membrane oxygenation) had surgery before extracorporeal membrane oxygenation. INTERVENTIONS: Blood was sampled before, and 1, 24, and 48 hours after extracorporeal membrane oxygenation implantation. Point-of-care tests (thrombelastometry/platelet aggregometry), conventional coagulation tests, whole blood counts, and platelet flow cytometry were performed. MEASUREMENTS AND MAIN RESULTS: Even before extracorporeal membrane oxygenation, plasmatic coagulation and platelet aggregation were impaired due to systemic inflammation, liver failure, anticoagulants (heparins, phenprocoumon, apixaban), and antiplatelet medication. During extracorporeal membrane oxygenation, hemodilution and contact of blood components with artificial surfaces and shear stress inside extracorporeal membrane oxygenation additionally contributed to coagulation and platelet defects. Fibrinogen levels, fibrin polymerization, platelet activation, and microparticle release were increased in venovenous extracorporeal membrane oxygenation compared to venoarterial extracorporeal membrane oxygenation patients. Point-of-care results were available faster than conventional analyses. Bleeding requiring blood product application occurred in three of 10 venovenous extracorporeal membrane oxygenation patients and in four of eight venoarterial extracorporeal membrane oxygenation patients. No thrombotic events were observed. In-hospital mortality was 30% for venovenous extracorporeal membrane oxygenation and 37.5% for venoarterial extracorporeal membrane oxygenation patients. CONCLUSIONS: The extracorporeal membrane oxygenation-associated coagulopathy is a multifactorial and quickly developing syndrome. It is characterized by individual changes of coagulation parameters and platelets and is aggravated by anticoagulants. The underlying factors of the extracorporeal membrane oxygenation-associated coagulopathy differ between venovenous extracorporeal membrane oxygenation and venoarterial extracorporeal membrane oxygenation patients and are best diagnosed by a combination of point-of-care and conventional coagulation and platelet analyses. Therapy protocols for treating extracorporeal membrane oxygenation-associated coagulopathy should be further validated in large-scale prospective clinical investigations.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/fisiopatologia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Insuficiência Cardíaca/terapia , Mortalidade Hospitalar , Hospitais Universitários , Humanos , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia
9.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881749

RESUMO

During open-heart surgery, the status of hemostasis has to be constantly monitored to quickly and reliably detect bleeding or coagulation disorders. In this study, a novel optimized piezo-based measuring system (PIEZ) for rheological monitoring of hemostasis was established. The applicability of the PIEZ for the evaluation of nucleic acid-based drugs influencing coagulation was analyzed. Thrombin aptamers such as NU172 might be used during extracorporeal circulation (ECC) in combination with a reduced heparin concentration or for patients with heparin-induced thrombocytopenia (HIT). Therefore, the effect of the coagulation inhibiting thrombin aptamer NU172 and the abrogation by its complementary antidote sequence (AD) were investigated by this rheological PIEZ system. After the addition of different NU172 concentrations, the coagulation of fresh human blood was analyzed under static conditions and using an in vitro rotation model under dynamic conditions (simulating ECC). The clotting times (CTs) detected by PIEZ were compared to those obtained with a medical reference device, a ball coagulometer. Additionally, after the circulation of blood samples for 30 min at 37 °C, blood cell numbers, thrombin markers (thrombin-antithrombin III (TAT) and fibrinopeptide A (FPA)) and a platelet activation marker (ß-thromboglobulin (ß-TG)) were analyzed by enzyme-linked immunosorbent assays (ELISAs). The increase of NU172 concentration resulted in prolonged CTs, which were comparable between the reference ball coagulometer and the PIEZ, demonstrating the reliability of the new measuring system. Moreover, by looking at the slope of the linear regression of the viscous and elastic components, PIEZ also could provide information on the kinetics of the coagulation reaction. The shear viscosity at the end of the measurements (after 300 s) was indicative of clot firmness. Furthermore, the PIEZ was able to detect the abrogation of coagulation inhibition after the equimolar addition of NU172 aptamer´s AD. The obtained results showed that the established PIEZ is capable to dynamically measure the hemostasis status in whole blood and can be applied to analyze nucleic acid-based drugs influencing the coagulation.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Ácidos Nucleicos/farmacologia , Adulto , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Contagem de Células Sanguíneas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Coagulação do Sangue Total
10.
Int J Mol Sci ; 20(7)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959917

RESUMO

Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFß signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.


Assuntos
Condrócitos/metabolismo , RNA Mensageiro/metabolismo , Agrecanas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição SOX9/metabolismo
11.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987077

RESUMO

Jaw periosteal cells (JPCs) represent a suitable stem cell source for bone tissue engineering (BTE) applications. However, challenges associated with limited cell numbers, stressful cell sorting, or the occurrence of cell senescence during in vitro passaging and the associated insufficient osteogenic potential in vitro of JPCs and other mesenchymal stem/stromal cells (MSCs) are main hurdles and still need to be solved. In this study, for the first time, induced pluripotent stem cells (iPSCs) were generated from human JPCs to open up a new source of stem cells for BTE. For this purpose, a non-integrating self-replicating RNA (srRNA) encoding reprogramming factors and green fluorescent protein (GFP) as a reporter was used to obtain JPC-iPSCs with a feeder- and xeno-free reprogramming protocol to meet the highest safety standards for future clinical applications. Furthermore, to analyze the potential of these iPSCs as a source of osteogenic progenitor cells, JPC-iPSCs were differentiated into iPSC-derived mesenchymal stem/stromal like cells (iMSCs) and further differentiated to the osteogenic lineage under xeno-free conditions. The produced iMSCs displayed MSC marker expression and morphology as well as strong mineralization during osteogenic differentiation.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Arcada Osseodentária/citologia , Periósteo/citologia , RNA/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Reprogramação Celular , Camadas Germinativas/citologia , Humanos , Cariotipagem , Células-Tronco Mesenquimais/citologia , Osteogênese
13.
Nanotheranostics ; 1(2): 154-165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071184

RESUMO

Rationale: Genetic therapy using modified mRNA for specific therapeutic protein expression for disease treatment and vaccination represents a new field of therapeutic and diagnostic medicine. Non-viral vectors transfection using biocompatible nanoliposomes enables safe and efficient delivery of therapeutic mRNA. Objective: Generation of non-toxic, cell-compatible cationic nanoliposomes as nanotheranostic agents to successfully deliver therapeutic mRNA. Methods and results: Cationic nanoliposomes (DC-Cholesterol/DOPE) were generated as transfection vehicles for either eGFP mRNA or the therapeutic anti-inflammatory, CD39 mRNA. We observed no toxicity using these nanoplexes and noted high cell viability after transfection. Nanoplexes for the transfection of eGFP mRNA showed an increase in fluorescence signals on microscopy as compared to the mRNA control after 24 hours in Chinese hamster ovary (CHO) cells (14.29 ± 5.30 vs. 1.49 ± 0.54; mean ± SD respectively; p<0.001) and flow cytometry (57.29 ± 14.59 vs 1.83 ± 0.34; % mean ± SD; p<0.001). Nanoplexes for the transfection of CD39 mRNA showed increased CD39 expression in flow cytometry (45.64 ± 15.3 vs. 3.94 ± 0.45; % mean ± SD; p<0.001) as compared to the mRNA control after 24 hours using CHO cells. We also demonstrated efficient transfection across several cell lines (CHO, HEK293, and A549), as well as long-term protein expression (120 h and 168 h) using these nanoplexes. Conclusions: We have developed and tested non-toxic, safe, and efficient nanoliposome preparations for the delivery of therapeutic mRNA that hold promise for novel therapies in diseases such as inflammatory and cardiovascular diseases, as well as cancer. We have also demonstrated that this approach provides a reliable technology to deliver CD39 mRNA as an anti-inflammatory therapeutic for future nanotheranostics approaches.

14.
Drug Des Devel Ther ; 11: 2753-2762, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075100

RESUMO

Polypropylene mesh implants are routinely used to repair abdominal wall defects or incisional hernia. However, complications associated with mesh implantation, such as mesh-related infections, can cause serious problems and may require complete surgical removal. Hence, the aim of the present study was the development of a safe and efficient coating to reduce postoperative mesh infections. Biodegradable poly(lactide-co-glycolide acid) microspheres loaded with rifampicin as an antibacterial agent were prepared through single emulsion evaporation method. The particle size distribution (67.93±3.39 µm for rifampicin-loaded microspheres and 64.43±3.61 µm for unloaded microspheres) was measured by laser diffraction. Furthermore, the encapsulation efficiency of rifampicin (61.5%±2.58%) was detected via ultraviolet-visible (UV/Vis) spectroscopy. The drug release of rifampicin-loaded microspheres was detected by UV/Vis spectroscopy over a period of 60 days. After 60 days, 92.40%±3.54% of the encapsulated rifampicin has been continuously released. The viability of BJ fibroblasts after incubation with unloaded and rifampicin-loaded microspheres was investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, which showed no adverse effects on the cells. Furthermore, the antibacterial impact of rifampicin-loaded microspheres and mesh implants, coated with the antibacterial microspheres, was investigated using an agar diffusion model with Staphylococcus aureus. The coated mesh implants were also tested in an in vivo mouse model of staphylococcal infection and resulted in a 100% protection against mesh implant infections or biofilm formation shown by macroscopic imaging, scanning electron microscopy, and histological examinations. This effective antibacterial mesh coating combining the benefit of a controlled drug delivery system and a potent antibacterial agent possesses the ability to significantly reduce postoperative implant infections.


Assuntos
Antibacterianos/administração & dosagem , Rifampina/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Infecção da Ferida Cirúrgica/prevenção & controle , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Feminino , Ácido Láctico/química , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polipropilenos/química , Rifampina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Telas Cirúrgicas/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Fatores de Tempo
15.
Mol Ther Nucleic Acids ; 8: 459-468, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918045

RESUMO

Synthetically modified mRNA is a unique bioactive agent, ideal for use in therapeutic applications, such as cancer vaccination or treatment of single-gene disorders. In order to facilitate mRNA transfections for future therapeutic applications, there is a need for the delivery system to achieve optimal transfection efficacy, perform with durable stability, and provide drug safety. The objective of our study was to comprehensively analyze the use of 3ß-[N-(N',N'-dimethylaminoethane) carbamoyl](DC-Cholesterol)/dioleoylphosphatidylethanolamine (DOPE) liposomes as a potential transfection agent for modified mRNAs. Our cationic liposomes facilitated a high degree of mRNA encapsulation and successful cell transfection efficiencies. More importantly, no negative effects on cell viability or immune reactions were detected posttransfection. Notably, the liposomes had a long-acting transfection effect on cells, resulting in a prolonged protein production of alpha-1-antitrypsin (AAT). In addition, the stability of these mRNA-loaded liposomes allowed storage for 80 days, without the loss of transfection efficacy. Finally, comprehensive analysis showed that these liposomes are fully hemocompatible with fresh human whole blood. In summary, we present an extensive analysis on the use of DC-cholesterol/DOPE liposomes as mRNA delivery vehicles. This approach provides the basis of a safe and efficient therapeutic strategy in the development of successful mRNA-based drugs.

16.
Eur J Cardiothorac Surg ; 52(1): 189-196, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430904

RESUMO

OBJECTIVES: Moderate or severe degree tricuspid valve regurgitation (TVR) is associated with high rates of morbidity and mortality. Surgical correction as the only therapeutic option offers unsatisfactory results. Recently, several interventional procedures have been introduced clinically in a limited cohort. We present our initial experiments with an innovative interventional valved stent graft for treatment of TVR. METHODS: A newly designed porcine pericardium-covered nitinol stent graft with a lateral bicuspid valve was adapted to size in a cadaver study. After haemodynamic testing in an ex vivo perfusion setup, vascular access, valve delivery and function were investigated in an ovine animal model ( n = 7). RESULTS: The device was implanted successfully in all animals. Vascular access was established surgically via the femoral vein without any vascular complications. Angiography demonstrated the correct position of the device with proper sealing of both venae cavae in 6 animals. In 1 extremely large animal, the position of the device was considered too cranial but still acceptable. Correct valve function was verified in all animals by both angiography and echocardiography. There were no persistent arrhythmias other than during valve implant. All animals survived the implant procedure and were sacrificed electively. CONCLUSIONS: This study demonstrated that this new valved stent graft could be delivered safely with correct positioning and valve function in this ovine model. Further long-term studies in animals implanted with the device after creation of tricuspid regurgitation are necessary to prove the haemodynamic benefit of this procedure.


Assuntos
Cateterismo Cardíaco/métodos , Próteses Valvulares Cardíacas , Insuficiência da Valva Tricúspide/cirurgia , Valva Tricúspide/cirurgia , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Humanos , Desenho de Prótese , Ovinos , Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/diagnóstico
17.
Stem Cells ; 35(1): 68-79, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250673

RESUMO

Several diseases are caused by missing or defective synthesis of proteins due to genetic or acquired disorders. In recent years, in vitro transcribed (IVT) messenger RNA (mRNA)-based therapy for de novo protein expression in cells has increased in importance. Thereby, desired proteins can be produced in cells by exogenous delivery of IVT mRNA, which does not integrate into the host genome and results in transient production of target proteins. Due to the lack of genomic integration, the risk of mutation and tumor development is minimized. Different approaches using IVT mRNA have been applied to alter the expression profiles of cells by the production of proteins. IVT mRNAs encoding transcription factors have led to the highly efficient induction of pluripotency in somatic cells and generated induced pluripotent stem cells that are free of viral vector components. Furthermore, specific IVT mRNA cocktails containing more than one specific IVT mRNA can be used to directly induce the differentiation into a desired cell type. In theory, every desired mRNA can be produced in vitro and used to enable extrinsic biosynthesis of target proteins in each cell type. Cells can be engineered by IVT mRNA to express antigens on dendritic cells for vaccination and tumor treatment, surface receptors on stem cells for increased homing to distinct areas, and to produce industrial grade human growth factors. In this review, we focus on the progress and challenges in mRNA-based cell engineering approaches. Stem Cells 2017;35:68-79.


Assuntos
Engenharia Celular , Reprogramação Celular , Transcrição Gênica , Animais , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Altern Lab Anim ; 44(3): 239-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27494624

RESUMO

In the quality assurance of medical products, tests for sterility are essential. For parenteral pharmaceuticals, avoiding the presence of pyrogens is crucial. These fever-inducing substances (endotoxins and non-endotoxins) are not eliminated by standard sterilisation processes, and are biologically active once in the bloodstream, causing risks to human health, ranging from mild reactions (e.g. fever) to septic shock and death. Therefore, for injectable formulations, pyrogen testing is mandatory. Over the years, various pyrogen testing methods have been introduced, namely: in the 1940s, the rabbit pyrogen test, which is an in vivo test that measures the fever reaction as an endpoint; in the 1970s, the Limulus Amoebocyte Lysate (LAL) test, which is an in vitro test (with the haemolymph of the horseshoe crab) that specifically detects endotoxin; and in 2010, the Monocyte-Activation Test (MAT), which is a non-animal based in vitro pyrogen test that represents a full replacement of the rabbit test. Due to the ubiquity and biological significance of pyrogens, we are currently further developing the MAT so that it can be used for other applications. More specifically, our focus is on the detection of pyrogenic contamination on medical devices, as well as on the measurement of air quality. In addition, further improvements to permit the use of cryopreserved blood in the MAT, to overcome the limitations in the availability of freshly-drawn blood from human donors, are ongoing.


Assuntos
Alternativas aos Testes com Animais/métodos , Teste do Limulus/história , Pirogênios/isolamento & purificação , Alternativas aos Testes com Animais/tendências , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , História do Século XX , História do Século XXI , Caranguejos Ferradura/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Pirogênios/toxicidade , Coelhos
19.
Thorac Cardiovasc Surg ; 64(7): 589-595, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26765244

RESUMO

Background During cardiac surgery with heart-lung-machine support, abdominal swabs are routinely used to adsorb blood from the operation field. In part, abdominal swabs exhibit procoagulant activity, which is usually considered harmless. However, coagulation induction and abnormal clot formation on the surface of abdominal swabs in the operation field may, if the blood is retransfused into the extracorporeal circuit, lead to severe thromboembolic complications. The aim of the present study was to elucidate the origin of the unexpected blood clotting upon contact with hypercoagulant swabs. Methods The coagulant properties of three abdominal swabs were characterized using a simple clotting test and human whole blood, which was anticoagulated with different heparin concentrations. Eluates prepared from the abdominal swabs and the color stabilizer polydiallyamine (PDAA) were incubated with blood and blood clotting was investigated. Furthermore, the effects of the abdominal swabs on blood clotting time and on heparin were investigated. Results Our data show that the three abdominal swabs as well as the respective eluates exhibit distinctive coagulant properties. The abdominal swab with the highest hypercoagulant effect significantly reduced blood clotting time and also led to a reduction in free heparin. PDAA does not induce activation of the coagulation system. Conclusion The data indicate that the hypercoagulant swab reduces the clotting time and the concentration of free heparin. Abdominal swabs used during complex cardiac surgery with heart-lung-machine support should definitely be tested for their coagulant properties using appropriate tests before clinical applications, as it cannot be specified what leads to their hypercoagulant property.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Perda Sanguínea Cirúrgica/prevenção & controle , Procedimentos Cirúrgicos Cardíacos/instrumentação , Coagulantes/administração & dosagem , Tampões de Gaze Cirúrgicos , Anticoagulantes/farmacologia , Testes de Coagulação Sanguínea , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Coagulantes/efeitos adversos , Máquina Coração-Pulmão , Heparina/farmacologia , Humanos , Teste de Materiais , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tampões de Gaze Cirúrgicos/efeitos adversos
20.
J Mater Sci Mater Med ; 27(2): 32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704549

RESUMO

Certain styrenic thermoplastic block copolymer elastomers can be processed to exhibit anisotropic mechanical properties which may be desirable for imitating biological tissues. The ex-vivo hemocompatibility of four triblock (hard-soft-hard) copolymers with polystyrene hard blocks and polyethylene, polypropylene, polyisoprene, polybutadiene or polyisobutylene soft blocks are tested using the modified Chandler loop method using fresh human blood and direct contact cell proliferation of fibroblasts upon the materials. The hemocompatibility and durability performance of a heparin coating is also evaluated. Measures of platelet and coagulation cascade activation indicate that the test materials are superior to polyester but inferior to expanded polytetrafluoroethylene and bovine pericardium reference materials. Against inflammatory measures the test materials are superior to polyester and bovine pericardium. The addition of a heparin coating results in reduced protein adsorption and ex-vivo hemocompatibility performance superior to all reference materials, in all measures. The tested styrenic thermoplastic block copolymers demonstrate adequate performance for blood contacting applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Próteses Valvulares Cardíacas , Teste de Materiais , Poliestirenos/química , Animais , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/fisiologia , Butadienos/química , Butadienos/farmacologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Elastômeros/química , Elastômeros/farmacologia , Testes Hematológicos , Hemólise/efeitos dos fármacos , Humanos , Pericárdio/citologia , Pericárdio/efeitos dos fármacos , Polienos/química , Polienos/farmacologia , Polímeros/química , Polímeros/farmacologia , Poliestirenos/farmacologia , Poliestirenos/uso terapêutico , Politetrafluoretileno/química , Politetrafluoretileno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA