Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 13(6): 582-592, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560893

RESUMO

Retinal degenerative diseases are a major cause of blindness involving the dysfunction of photoreceptors, retinal pigmented epithelium (RPE), or both. A promising treatment approach involves replacing these cells via surgical transplantation, and previous work has shown that cell delivery scaffolds are vital to ensure sufficient cell survival. Thus, identifying scaffold properties that are conducive to cell viability and maturation (such as suitable material and mechanical properties) is critical to ensuring a successful treatment approach. In this study, we investigated the effect of scaffold stiffness on human RPE attachment, survival, and differentiation, comparing immortalized (ARPE-19) and stem cell-derived RPE (iRPE) cells. Polydimethylsiloxane was used as a model polymer substrate, and varying stiffness (~12 to 800 kPa) was achieved by modulating the cross-link-to-base ratio. Post-attachment changes in gene and protein expression were assessed using qPCR and immunocytochemistry. We found that while ARPE-19 and iRPE exhibited significant differences in morphology and expression of RPE markers, substrate stiffness did not have a substantial impact on cell growth or maturation for either cell type. These results highlight the differences in expression between immortalized and iPSC-derived RPE cells, and also suggest that stiffnesses in this range (~12-800 kPa) may not result in significant differences in RPE growth and maturation, an important consideration in scaffold design.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Alicerces Teciduais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Dimetilpolisiloxanos/química , Sobrevivência Celular , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Linhagem Celular , Proliferação de Células
2.
Cell Transplant ; 31: 9636897221104451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35758274

RESUMO

Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Ratos , Retina/patologia , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinose Pigmentar/terapia , Transplante de Células-Tronco/métodos , Suínos
3.
Exp Eye Res ; 207: 108566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838142

RESUMO

Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35 kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115 kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800 kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Retina/citologia , Degeneração Retiniana/cirurgia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Reagentes de Ligações Cruzadas , Módulo de Elasticidade/fisiologia , Degeneração Retiniana/fisiopatologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA