Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527558

RESUMO

Nonalcoholic fatty liver disease (NAFLD) prevalence is rising globally with no pharmacotherapies approved. Hepatic steatosis is closely associated with progression and prognosis of NAFLD. Dapagliflozin, kind of sodium-glucose cotransporter 2 (SGLT2) inhibitor, was found to improve NAFLD in clinical trials, while the underlying mechanism remains poorly elucidated. Here, we reported that dapagliflozin effectively mitigated liver injury and relieved lipid metabolism disorders in vivo. Further investigation showed that dapagliflozin markedly suppressed Liver X Receptor α (LXRα)-mediated synthesis of de novo lipids and bile acids (BAs). In AML12 cells, our results proved dapagliflozin decreased lipid contents via inhibiting the expression of LXRα and downstream liposynthesis genes. Proteosome inhibitor MG132 eliminated the effect of dapagliflozin on LXRα-mediated signaling pathway, which suggested that dapagliflozin downregulated LXRα expression through increasing LXRα degradation. Knockdown of LXRα with siRNA abolished the reduction of lipogenesis from dapagliflozin treatment, indicating that LXRα might be the pivotal target for dapagliflozin to exhibit the aforementioned benefits. Furthermore, the data showed that dapagliflozin reversed gut dysbiosis induced by BAs disruption and altered gut microbiota profile to reduce intestinal lipids absorption. Together, our study deciphered a novel mechanism by which dapagliflozin relieved hepatic steatosis and highlighted the potential benefit of dapagliflozin in treating NAFLD.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores X do Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Lipídeos/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38029665

RESUMO

Diabetic kidney disease (DKD), a common microvascular complication of diabetes, currently lacks specific diagnostic indicators and therapeutic targets, resulting in miss of early intervention. To profile metabolic conditions in complex and precious biological samples and screen potential biomarkers for DKD diagnosis and prognosis, a rapid, convenient and reliable quantification method for carboxyl compounds by gas chromatography-mass spectrometry (GC-MS) was established with isobutyl chloroformate derivatization. The derivatives were extracted with hexane, injected into GC-MS and quantified with selected ion monitoring mode. This method showed excellent linearity(R2 > 0.99), good recoveries (81.1%-115.5%), good repeatability (RSD < 20%) and sensitivity (LODs: 0.20-499.90 pg, LOQs: 2.00-1007.00 pg). Among the 37 carboxyl compounds analyzed, 12 metabolites in short-chain fatty acids (SCFAs) metabolism pathway and amino acid metabolism pathway were linked with DKD development and among them, 6 metabolites were associated with both development and prognosis of DKD in mice. In conclusion, a reliable, convenient and sensitive method based on isobutyl chloroformate derivatization and GC-MS analysis is established and successfully applied to quantify 37 carboxyl compounds in biological samples of mice and 12 potential biomarkers for DKD development and prognosis are screened.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nefropatias Diabéticas/diagnóstico , Formiatos/química , Biomarcadores
3.
Eur J Pharmacol ; 943: 175560, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736941

RESUMO

Dapagliflozin, the Sodium-glucose cotransporter 2 (SGLT2) inhibitor class of glucose-lowering agents, has shown the significantly nephroprotective effects to reduce the risk of kidney failure in diabetes. However, the underlying mechanisms are incompletely understood to explain the beneficial effects of dapagliflozin on kidney function. Here, we demonstrated that the administered of dapagliflozin for 12 weeks improved the proteinuria, histomorphology damage, oxidative stress, and macrophage infiltrations in the kidney of streptozotocin (STZ)-induced diabetic mice. Meanwhile, dapagliflozin attenuated the renal inflammation and fibrosis by reducing the pro-inflammatory factors interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor α (TNF-α) and anti-fiber factor fibronectin (FN) and elevating the anti-inflammatory factor IL-10. Our data revealed that dapagliflozin exerted anti-inflammatory effects by inhibiting the activation of high mobility group box 1 (HMGB1)/TLR2/4/NF-κB signaling pathway. Consistently, we found that dapagliflozin suppressed the expression of HMGB1 and downstream TLR2/4/NF-κB signaling proteins in the human proximal tubular (HK-2) stimulated by high glucose and lipids or HMGB1 and RAW264.7 cells stimulated by IL-1ß, respectively. Further experiments were performed in the indirect co-culture model of RAW264.7 and HK-2 cells induced by high glucose and lipids. The results again confirmed the effects of dapagliflozin on alleviating inflammatory response and regulating the proportions of M1/M2 macrophage. It is indicated that the feedback signaling of HMGB1 between the tubules and macrophage involves in the persistence of the inflammation. These data demonstrate that dapagliflozin suppress the self-perpetuating inflammation by blocking the feedback loop of HMGB1 in the kidney, which contribute to ameliorate the renal injury in diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Proteína HMGB1 , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Proteína HMGB1/metabolismo , Retroalimentação , Receptor 2 Toll-Like/metabolismo , Rim , Transdução de Sinais , Inflamação/metabolismo , Glucose/metabolismo , Lipídeos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo
4.
Chin J Nat Med ; 17(9): 641-649, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31526499

RESUMO

Bupleurum polysaccharides (BPs) is isolated from Bupleurum smithii var. parvifolium, a key traditional Chinese medicine. The study was to investigate the effects of BPs on diabetic kidney injury. After two intraperitoneal injections of streptozotozin (STZ) 100 mg·kg-1, renal injury in diabetic mice was induced and BPs was orally administrated at dosages of 30 and 60 mg·kg-1·d-1. The STZ injected mice developed renal function damage, renal inflammation and fibrosis known as diabetic kidney disease (DKD). BPs significantly reduced serum creatinine level and urinary albumin excretion rate, with the attenuated swelling of kidneys. BPs treatment obviously alleviated the pathological damage of renal tissue. The progression of renal injury in BPs treated mice was inhibited with less expression of type IV collagen (Col IV), fibronectin (FN) and α-smooth muscle actin (α-SMA). The inhibition of inflammation in kidney was associated with the reduced level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). BPs administration suppressed the over-expression of toll like receptor 4 (TLR4) and high-mobility group box 1 (HMGB1) with lowered activity of nuclear factor kappa B (NF-κB) in renal tissue of diabetic mice. Oral administration of BPs effectively prevented the development ofrenal injury in diabetic mice. This study suggested that the protection provided by BPs might affect through the interruption of HMGB1-TLR4 pathway, leading to the inhibition of renal inflammation and fibrotic process.


Assuntos
Bupleurum/química , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Proteína HMGB1/metabolismo , Polissacarídeos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/metabolismo , Inflamação/prevenção & controle , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Raízes de Plantas/química , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Fator de Transcrição RelA/metabolismo
5.
J Sep Sci ; 41(12): 2576-2584, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29603663

RESUMO

Lactic acid and 2-hydroxyglutaric acid are chiral metabolites that have two distinct d- and l-enantiomers with distinct biochemical properties. Perturbations of a single enantiomeric form have been found to be closely related to certain diseases. Therefore, the ability to differentiate the d and l enantiomers is important for these disease studies. Herein, we describe a method for the separation and determination of lactic acid and 2-hydroxyglutaric acid enantiomers by chiral derivatization (with l-menthol and acetyl chloride) combined with gas chromatography and mass spectrometry. The two pairs of above-mentioned enantiomers exhibited linear calibration curves with a correlation coefficient (R2 ) exceeding 0.99. The measured data were accurate in the acceptable recovery range of 88.17-102.30% with inter- and intraday precisions (relative standard deviations) in the range of 4.23-17.26%. The limits of detection for d-lactic acid, l-lactic acid, d-2-hydroxyglutaric acid, and l-2-hydroxyglutaric acid were 0.13, 0.11, 1.12, and 1.16 µM, respectively. This method was successfully applied to analyze mouse plasma. The d-lactic acid levels in type 2 diabetes mellitus mouse plasma were observed to be significantly higher (P < 0.05, t-test) than those of normal mice, suggesting that d-lactic acid may serve as an indicator for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glutaratos/química , Ácido Láctico/química , Animais , Glutaratos/sangue , Humanos , Ácido Láctico/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Am J Physiol Endocrinol Metab ; 309(10): E861-73, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26419589

RESUMO

Endoplasmic reticulum (ER) stress and caspase 8-dependent apoptosis are two interlinked causal events in maternal diabetes-induced neural tube defects (NTDs). The inositol-requiring enzyme 1α (IRE1α) signalosome mediates the proapoptotic effect of ER stress. Diabetes increases tumor necrosis factor receptor type 1R-associated death domain (TRADD) expression. Here, we revealed two new unfolded protein response (UPR) regulators, TRADD and Fas-associated protein with death domain (FADD). TRADD interacted with both the IRE1α-TRAF2-ASK1 complex and FADD. In vivo overexpression of a FADD dominant negative (FADD-DN) mutant lacking the death effector domain disrupted diabetes-induced IRE1α signalosome and suppressed ER stress and caspase 8-dependent apoptosis, leading to NTD prevention. FADD-DN abrogated ER stress markers and blocked the JNK1/2-ASK1 pathway. Diabetes-induced mitochondrial translocation of proapoptotic Bcl-2 members mitochondrial dysfunction and caspase cleavage were also alleviated by FADD-DN. In vitro TRADD overexpression triggered UPR and ER stress before manifestation of caspase 3 and caspase 8 cleavage and apoptosis. FADD-DN overexpression repressed high glucose- or TRADD overexpression-induced IRE1α phosphorylation, its downstream proapoptotic kinase activation and endonuclease activities, and apoptosis. FADD-DN also attenuated tunicamycin-induced UPR and ER stress. These findings suggest that TRADD participates in the IRE1α signalosome and induces UPR and ER stress and that the association between TRADD and FADD is essential for diabetes- or high glucose-induced UPR and ER stress.


Assuntos
Apoptose , Regulação para Baixo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Defeitos do Tubo Neural/etiologia , Neurogênese , Gravidez em Diabéticas/fisiopatologia , Resposta a Proteínas não Dobradas , Animais , Biomarcadores/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/fisiopatologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multienzimáticos/metabolismo , Proteínas Mutantes/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo
7.
Am J Physiol Endocrinol Metab ; 305(5): E667-78, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23880312

RESUMO

Preexisting maternal diabetes increases the risk of neural tube defects (NTDs). The mechanism underlying maternal diabetes-induced NTDs is not totally defined, and its prevention remains a challenge. Autophagy, an intracellular process to degrade dysfunction protein and damaged cellular organelles, regulates cell proliferation, differentiation, and apoptosis. Because autophagy impairment causes NTDs reminiscent of those observed in diabetic pregnancies, we hypothesize that maternal diabetes-induced autophagy impairment causes NTD formation by disrupting cellular homeostasis, leading to endoplasmic reticulum (ER) stress and apoptosis, and that restoration of autophagy by trehalose, a natural disaccharide, prevents diabetes-induced NTDs. Embryos from nondiabetic and type 1 diabetic mice fed with or without 2 or 5% trehalose water were used to assess markers of autophagy, ER stress, and neurogenesis, numbers of autophagosomes, gene expression that regulates autophagy, NTD rates, indices of mitochondrial dysfunction, and neuroepithelial cell apoptosis. Maternal diabetes suppressed autophagy by significantly reducing LC3-II expression, autophagosome numbers, and GFP-LC3 punctate foci in neuroepithelial cells and by altering autophagy-related gene expression. Maternal diabetes delayed neurogenesis by blocking Sox1 neural progenitor differentiation. Trehalose treatment reversed autophagy impairment and prevented NTDs in diabetic pregnancies. Trehalose resolved homeostatic imbalance by correcting mitochondrial defects, dysfunctional proteins, ER stress, apoptosis, and delayed neurogenesis in the neural tubes exposed to hyperglycemia. Our study demonstrates for the first time that maternal diabetes suppresses autophagy in neuroepithelial cells of the developing neural tube, leading to NTD formation, and provides evidence for the potential efficacy of trehalose as an intervention against hyperglycemia-induced NTDs.


Assuntos
Autofagia/efeitos dos fármacos , Defeitos do Tubo Neural/prevenção & controle , Gravidez em Diabéticas/tratamento farmacológico , Trealose/farmacologia , Animais , Autofagia/fisiologia , Western Blotting , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Gravidez , Gravidez em Diabéticas/metabolismo , Gravidez em Diabéticas/fisiopatologia
8.
Diabetes ; 61(8): 2084-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688338

RESUMO

Oxidative stress and apoptosis are implicated in the pathogenesis of diabetic embryopathy. The proapoptotic c-Jun NH(2)-terminal kinases (JNK)1/2 activation is associated with diabetic embryopathy. We sought to determine whether 1) hyperglycemia-induced oxidative stress is responsible for the activation of JNK1/2 signaling, 2) JNK1 contributes to the teratogenicity of hyperglycemia, and 3) both JNK1 and JNK2 activation cause activation of downstream transcription factors, caspase activation, and apoptosis, resulting in neural tube defects (NTDs). Wild-type (WT) embryos from nondiabetic WT dams and WT, superoxide dismutase (SOD)1-overexpressing, jnk1(+/-), jnk1(-/-), and jnk2(-/-) embryos exposed to maternal hyperglycemia were used to assess JNK1/2 activation, NTDs, activation of transcription factors downstream of JNK1/2, caspase cascade, and apoptosis. SOD1 overexpression abolished diabetes-induced activation of JNK1/2 and their downstream effectors: phosphorylation of c-Jun, activating transcription factor 2, and E twenty-six-like transcription factor 1 and dephosphorylation of forkhead box class O3a. jnk1(-/-) embryos had significantly lower incidences of NTDs than those of WT or jnk1(+/-) embryos. Either jnk1 or jnk2 gene deletion blocked diabetes-induced activation of JNK1/2 signaling, caspases 3 and 8, and apoptosis in Sox1(+) neural progenitors of the developing neural tube. Our results show that JNK1 and JNK2 are equally involved in diabetic embryopathy and that the oxidative stress-JNK1/2-caspase pathway mediates the proapoptotic signals and the teratogenicity of maternal diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Diabetes Mellitus/fisiopatologia , Doenças Fetais/etiologia , MAP Quinase Quinase 7/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia , Animais , Caspases/metabolismo , Ativação Enzimática , Feminino , Deleção de Genes , Hiperglicemia/fisiopatologia , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Defeitos do Tubo Neural/etiologia , Gravidez , Complicações na Gravidez/etiologia , Superóxido Dismutase/biossíntese , Superóxido Dismutase-1
9.
Acta Pharmacol Sin ; 29(5): 573-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18430365

RESUMO

AIM: To investigate the effect of recombined human glucagon-like peptide 1 (rhGLP-1 [7-36]) on the secretion and expression of amylin in Goto-Kakizaki (GK) rats. METHODS: The GK rats were treated with rhGLP-1 (7-36) 56 and 133 mug/kg subcutaneously for 12 weeks. The fasting and post-prandial blood glucose levels were measured. The plasma amylin concentration was measured by ELISA. The transcription levels of amylin and insulin mRNA were evaluated by fluorescent-quantitative- PCR. Immunohistochemistry was utilized to detect the amylin protein. Histological examination was assayed by light microscopy. RESULTS: Treatment with rhGLP-1 (7-36) caused a significant reduction of post-prandial blood glucose levels in the GK rats (P<0.05). The plasma amylin levels of the GK rats were lower than those of Wistar rats after the glucose administration (P<0.01). Treatment with rhGLP-1 (7-36) exhibited a marked elevation of the glucose-stimulated plasma amylin level (P<0.05) and slight histological amelioration. The amylin expression was augmented in the rhGLP-1 (7-36)-treated GK rat pancreas. Amylin and insulin mRNA were also highly expressed in the treated GK rats (P<0.05). However, the ratio of amylin to insulin mRNA was significantly decreased by treatment with rhGLP-1 (7-36). CONCLUSION: RhGLP-1 (7-36) stimulates the secretion and expression of amylin, and exerts a beneficial effect on the ratio of amylin to insulin mRNA. These findings suggest that GLP-1 and GLP-1 analogs are ideal candidates for the treatment of type 2 diabetes.


Assuntos
Amiloide/sangue , Amiloide/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Amiloide/genética , Animais , Glicemia/análise , Diabetes Mellitus Tipo 2/fisiopatologia , Ingestão de Alimentos , Jejum , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/farmacologia , Humanos , Hipoglicemiantes/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , RNA Mensageiro/análise , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA