RESUMO
ABSTRACT: Unhealthy lifestyles have placed a significant burden on individuals' cardiovascular health. Anthocyanins are water-soluble flavonoid pigments found in a wide array of common foods and fruits. Anthocyanins have the potential to contribute to the prevention and treatment of cardiovascular disease by improving lipid profiles and vascular function, reducing blood glucose levels and blood pressure, and inhibiting inflammation. These actions have been demonstrated in numerous clinical and preclinical studies. At the cellular and molecular level, anthocyanins and their metabolites could protect endothelial cells from senescence, apoptosis, and inflammation by activating the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthases, silent information regulator 1 (SIRT1), or nuclear factor erythroid2-related factor 2 pathways and inhibiting the nuclear factor kappa B, Bax, or P38 mitogen-activated protein kinase pathways. Furthermore, anthocyanins prevent vascular smooth muscle cell from platelet-derived growth factor -induced or tumor necrosis factor-α-induced proliferation and migration by inhibiting the focal adhesion kinase and extracellular regulated protein kinases signaling pathways. Anthocyanins could also attenuate vascular inflammation by reducing the formation of oxidized lipids, preventing leukocyte adhesion and infiltration of the vessel wall, and macrophage phagocytosis of deposited lipids through reducing the expression of cluster of differentiation 36 and increasing the expression of ATP-binding cassette subfamily A member 1 and ATP-binding cassette subfamily G member 1. At the same time, anthocyanins could lower the risk of thrombosis by inhibiting platelet activation and aggregation through down-regulating P-selectin, transforming growth factor-1, and CD40L. Thus, the development of anthocyanin-based supplements or derivative drugs could provide new therapeutic approaches to the prevention and treatment of vascular diseases.
Assuntos
Antocianinas , Anti-Inflamatórios , Doenças Cardiovasculares , Transdução de Sinais , Humanos , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Animais , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Fármacos Cardiovasculares/farmacologiaRESUMO
Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.
Assuntos
Cumarínicos , Inflamação , Placa Aterosclerótica , Animais , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Cumarínicos/farmacologia , Humanos , Camundongos , Masculino , Inflamação/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Camundongos Knockout para ApoE , Dieta Hiperlipídica , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.
Assuntos
Aterosclerose , Modelos Animais de Doenças , Hiperlipidemia Familiar Combinada , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Aterosclerose/tratamento farmacológico , Humanos , Camundongos , Hiperlipidemia Familiar Combinada/tratamento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Triglicerídeos/sangue , Dieta Hiperlipídica , Atorvastatina/uso terapêutico , Atorvastatina/farmacologiaRESUMO
BACKGROUND: Postoperative acute kidney injury (AKI) is a common condition after surgery, however, the available data about nationwide epidemiology of postoperative AKI in China from large and high-quality studies are limited. This study aimed to determine the incidence, risk factors and outcomes of postoperative AKI among patients undergoing surgery in China. METHODS: This was a large, multicentre, retrospective study performed in 16 tertiary medical centres in China. Adult patients (≥18 years of age) who underwent surgical procedures from 1 January 2013 to 31 December 2019 were included. Postoperative AKI was defined by the Kidney Disease: Improving Global Outcomes creatinine criteria. The associations of AKI and in-hospital outcomes were investigated using logistic regression models adjusted for potential confounders. RESULTS: Among 520 707 patients included in our study, 25 830 (5.0%) patients developed postoperative AKI. The incidence of postoperative AKI varied by surgery type, which was highest in cardiac (34.6%), urologic (8.7%) and general (4.2%) surgeries. A total of 89.2% of postoperative AKI cases were detected in the first 2 postoperative days. However, only 584 (2.3%) patients with postoperative AKI were diagnosed with AKI on discharge. Risk factors for postoperative AKI included older age, male sex, lower baseline kidney function, pre-surgery hospital stay ≤3 days or >7 days, hypertension, diabetes mellitus and use of proton pump inhibitors or diuretics. The risk of in-hospital death increased with the stage of AKI. In addition, patients with postoperative AKI had longer lengths of hospital stay (12 versus 19 days) and were more likely to require intensive care unit care (13.1% versus 45.0%) and renal replacement therapy (0.4% versus 7.7%). CONCLUSIONS: Postoperative AKI was common across surgery type in China, particularly for patients undergoing cardiac surgery. Implementation and evaluation of an alarm system is important for the battle against postoperative AKI.
Assuntos
Injúria Renal Aguda , Complicações Pós-Operatórias , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/epidemiologia , Masculino , Feminino , China/epidemiologia , Incidência , Estudos Retrospectivos , Fatores de Risco , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Idoso , Adulto , Mortalidade HospitalarRESUMO
Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Assuntos
Imunidade , Humanos , Granzimas , BiomarcadoresRESUMO
Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.
Assuntos
Dissecção Aórtica , Proteoma , Camundongos , Animais , Humanos , Proteínas de Ligação ao Cálcio , Proteômica , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Modelos Animais de Doenças , Dissecção Aórtica/tratamento farmacológicoRESUMO
The regulation of autoimmunity against pancreatic islet ß cells for type 1 diabetes (T1D) onset is still unclear. NOD/ShiLtJ (NOD) mice are prone to the onset of autoimmune diabetes, but its congenic strain, ALR/Lt (ALR), is not. Here we show that dendritic cells (DC) in ALR mice have impaired migratory and T-cell priming capability. Genomic comparative analysis maps a 33-bp deletion in the ALR Myosin IXb (Myo9b) gene when compared with NOD genome; meanwhile, data from knock-in models show that this ALR Myo9b allele impairs phenotypic and functional maturation of DCs, and prevents the development and progression of spontaneous autoimmune diabetes in NOD mice. In parallel, while the ALR 33-bp deletion of Myo9b is not conserved in human, we find a MYO9B R133Q polymorphism associating with increased risk of T1D and enhanced DC function in patients with T1D. Our results thus hint that alterations in Myo9b may contribute to altered DC function and autoimmune diabetes onset.
Assuntos
Células Dendríticas , Diabetes Mellitus Tipo 1 , Miosinas , Animais , Humanos , Camundongos , Alelos , Diabetes Mellitus Tipo 1/genética , Camundongos Endogâmicos NOD , Mutação , Miosinas/genéticaRESUMO
Hepatic insulin resistance (IR), as a downstream sequela of nonalcoholic fatty liver disease (NAFLD), is strongly associated with liver steatosis. Despite numerous mechanism advancements, the molecular underpinnings and pathogenesis of hepatic IR, especially regarding the pattern recognition receptors in hepatocytes, remain elusive. Here, we identified hepatocyte NLRP3 as a direct and previously-unresolved driver of hepatic IR to promote steatosis response. Under the model of NAFLD, we identified hepatocyte NLRP3 as a crucial inducer of hepatic IR by undertaking multilayer transcriptomic searches and further confirmed that its expression was increased in the liver tissues from NAFLD patients and mouse models (high-fat diet (HFD), leptin-receptor-deficient (db/db) mice), and in palmitic acid (PA)-induced hepatocytes. Loss- or gain-of-function of hepatocyte-specific NLRP3 in HFD-induced mice ameliorated or exacerbated hepatic IR and steatosis, respectively. Mechanistically, NLRP3 directly bound to and promoted protein kinase C epsilon (PKCε) activation to impair insulin signaling and increase liver steatosis, while inhibition of PKCε activation dampened the beneficial effects seen in HFD-induced NLRP3-deficient mice. Moreover, we performed screening and discovered that the transcription factor Yin Yang 1 (YY1) positively controlled NLRP3 expression. In translational potential, adeno-associated virus serotype 8 (AAV8)-mediated NLRP3 knockdown in the liver alleviated hepatic IR and steatosis in db/db mice, and pharmacological inhibition of NLRP3 markedly alleviated diet-induced metabolic disorders. This finding reveals a previously-unexpected regulatory axis from YY1 to PKCε via NLRP3 induction for metabolic diseases and establishes the YY1-NLRP3-PKCε axis as a potential therapeutic target for NAFLD.
Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína Quinase C-épsilon/genética , Resistência à Insulina/genética , Hepatócitos/metabolismoRESUMO
BACKGROUND/AIM: To assess the correlation between serum uric acid (UA) level and diabetic kidney disease among adult-onset Type 1 diabetes mellitus (T1DM) patients in China. METHODS: A total of 184 patients with adult-onset T1DM between January 2014 and December 2016 were recruited, with demographics and medical data collected. Comparisons were performed between according to different serum UA gender-specific quartiles. Relationship between serum UA level with urinary ACR and eGFR was also assessed. RESULTS: Median urinary ACR and eGFR were 21.55 [10.79, 45.02] mg/g and 113.86 [88.43, 143.61] ml/min/1.73 m2, respectively. The median UA was 257.4 (208.2-334.8) µmol/L. Participants with higher serum UA levels had higher urinary ACR and lower eGFR than those with lower UA (P < 0.05). Higher serum UA level was significantly associated with higher urinary ACR in Spearman's correlational analysis (P = 0.006) and multiple stepwise regression analysis (P = 0.013). The association between serum UA and urinary ACR was not linear, but showed a curve correlation, which also showed in the sensitivity analysis. Serum UA in the upper gender-specific quartile, was associated with lower eGFR (P < 0.001) and showed an independent negative correlation with eGFR in multiple stepwise regression analysis (P < 0.001). CONCLUSIONS: The serum UA level was negatively correlated with eGFR and had a curve correlation with urinary ACR in adult-onset T1DM patients of China.
Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Adulto , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/etiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Ácido Úrico , Diabetes Mellitus Tipo 2/complicações , Análise de Regressão , China/epidemiologia , Taxa de Filtração GlomerularRESUMO
SIGNIFICANCE STATEMENT: Serum creatinine is not a sensitive biomarker for neonatal AKI because it is confounded by maternal creatinine level, gestational age, and neonatal muscle mass. In this multicenter cohort study of 52,333 hospitalized Chinese neonates, the authors proposed serum cystatin C-related criteria (CyNA) for neonatal AKI. They found that cystatin C (Cys-C) is a robust and sensitive biomarker for identifying AKI in neonates who are at an elevated risk of in-hospital mortality and that CyNA detects 6.5 times as many cases as the modified Kidney Disease Improving Global Outcomes creatinine criteria. They also show that AKI can be detected using a single test of Cys-C. These findings suggest that CyNA shows promise as a powerful and easily applicable tool for detecting AKI in neonates. BACKGROUND: Serum creatinine is not a sensitive biomarker for AKI in neonates. A better biomarker-based criterion for neonatal AKI is needed. METHODS: In this large multicenter cohort study, we estimated the upper normal limit (UNL) and reference change value (RCV) of serum cystatin C (Cys-C) in neonates and proposed cystatin C-based criteria (CyNA) for detecting neonatal AKI using these values as the cutoffs. We assessed the association of CyNA-detected AKI with the risk of in-hospital death and compared CyNA performance versus performance of modified Kidney Disease Improving Global Outcomes (KDIGO) creatinine criteria. RESULTS: In this study of 52,333 hospitalized neonates in China, Cys-C level did not vary with gestational age and birth weight and remained relatively stable during the neonatal period. CyNA criteria define AKI by a serum Cys-C of ≥2.2 mg/L (UNL) or an increase in Cys-C of ≥25% (RCV) during the neonatal period. Among 45,839 neonates with measurements of both Cys-C and creatinine, 4513 (9.8%) had AKI detected by CyNA only, 373 (0.8%) by KDIGO only, and 381 (0.8%) by both criteria. Compared with neonates without AKI by both criteria, neonates with AKI detected by CyNA alone had an increased risk of in-hospital mortality (hazard ratio [HR], 2.86; 95% confidence interval [95% CI], 2.02 to 4.04). Neonates with AKI detected by both criteria had an even higher risk of in-hospital mortality (HR, 4.86; 95% CI, 2.84 to 8.29). CONCLUSIONS: Serum Cys-C is a robust and sensitive biomarker for detecting neonatal AKI. Compared with modified KDIGO creatinine criteria, CyNA is 6.5 times more sensitive in identifying neonates at elevated risk of in-hospital mortality.
Assuntos
Injúria Renal Aguda , Cistatina C , Recém-Nascido , Humanos , Estudos de Coortes , Creatinina , Estudos Prospectivos , Mortalidade Hospitalar , BiomarcadoresRESUMO
Cardiovascular and metabolic disease (CVMD) is becoming increasingly prevalent in developed and developing countries with high morbidity and mortality. In recent years, fibroblast growth factor 21 (FGF21) has attracted intensive research interest due to its purported role as a potential biomarker and critical player in CVMDs, including atherosclerosis, coronary artery disease, myocardial infarction, hypoxia/reoxygenation injury, heart failure, type 2 diabetes, obesity, and nonalcoholic steatohepatitis. This review summarizes the recent developments in investigating the role of FGF21 in CVMDs and explores the mechanism whereby FGF21 regulates the development of CVMDs. Novel molecular targets and related pathways of FGF21 (adenosine 5'-monophosphate-activated protein kinase, silent information regulator 1, autophagy-related molecules, and gut microbiota-related molecules) are highlighted in this review. Considering the poor pharmacokinetics and biophysical properties of native FGF21, the development of new generations of FGF21-based drugs has tremendous therapeutic potential. Related preclinical and clinical studies are also summarized in this review to foster clinical translation. Thus, our review provides a timely and insightful overview of the physiology, biomarker potential, molecular targets, and therapeutic potential of FGF21 in CVMDs.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aterosclerose/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , BiomarcadoresRESUMO
Acetaminophen (APAP)-induced liver injury (AILI) has been recognized as a pivotal contributor to drug-induced liver failure in Western countries, but its molecular mechanism remains poorly understood. Growth differentiation factor 15 (GDF15) is a pleiotropic factor that alleviates non-alcoholic liver steatohepatitis, liver fibrosis and liver injury. The aim of the present study was to examine the possibility whether GDF15 confers protection against AILI. We found that the gene expression of Gdf15 was increased significantly after APAP overdose in mice. Next, the role of Gdf15 in AILI was evaluated by hepatic Gdf15 overexpression (using adeno-associated virus serotype 8), injection with recombinant human GDF15 (rhGDF15) and Gdf15 knockout mice after challenge with APAP. A marked elevation of Gdf15 was observed after AILI. However, there were no significant differences in AILI-related liver injury and JNK phosphorylation after Gdf15 overexpression, rhGDF15 injection or Gdf15 deficiency. Together, we conclude that, despite a noticeable elevation of Gdf15 level after AILI, Gdf15 is dispensable for APAP-induced AILI. Our study further suggests that genomic analysis of mRNA expression after APAP overdose is of limited relevance unless followed up by a functional analysis of candidate genes in vivo.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Humanos , Animais , Acetaminofen/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Camundongos Knockout , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Atherosclerosis is a chronic inflammatory vascular disease in which endothelial cells play an important role in maintaining vascular homeostasis. Endotheliitis caused by endothelial dysfunction (ED) is the key cause for the development of cardiovascular and cerebrovascular diseases as well as other vascular system diseases. Resveratrol (RES), a multi-functional polyphenol present in edible plants and fruits, prevents cardiovascular disease by regulating a variety of athero-relevant signaling pathways. By transcriptome profiling of RES-treated human umbilical vein endothelial cells (HUVECs) and in-depth bioinformatic analysis, we observed that differentially expressed genes (DEGs) were enriched in KEGG pathways of fluid shear stress and atherosclerosis, suggesting that the RES may serve as a good template for a shear stress mimetic drug that hold promise in combating atherosclerosis. A heat map and multiple datasets superimposed screening revealed that RES significantly down-regulated phosphatase and actin modulator 1 (PHACTR1), a pivotal coronary artery disease risk gene associated with endothelial inflammation and polyvascular diseases. We further demonstrate that RES down-regulated the gene and protein expression of PHACTR1 and inhibited TNF-α-induced adhesion of THP-1 monocytes to activated endothelial cells via suppressing the expression of PHACTR1. Taken together, our study reveals that PHACTR1 represents a new molecular target for RES to maintain endothelial cell homeostasis and prevent atherosclerotic cardiovascular disease.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Resveratrol/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , HomeostaseRESUMO
BACKGROUND: The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce. METHODS: Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers. RESULTS: In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine. CONCLUSIONS: Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging.
Assuntos
Envelhecimento , Glutamina , Camundongos , Animais , Cromatografia Líquida , Espectrometria de Massas , Biomarcadores/metabolismo , Envelhecimento/metabolismo , Ácidos OleicosRESUMO
Immune checkpoint blockade (ICB) therapy has shown promising antitumor effects, but its immune response rate remains unsatisfactory. In recent years, chemotherapy has been proven to have synergistic effects with ICB therapy because some chemotherapeutic agents can enhance the immunogenicity of tumor cells by inducing immunogenic cell death (ICD). However, it cannot be ignored that chemotherapy often shows limited therapeutic efficacy due to high cytotoxicity, drug resistance, and some other side effects. Herein, we report a strategy to improve cancer immunotherapy by utilizing red blood cell-based vaccines (RBC-vaccines) where chemotherapy-induced tumor antigens (cAgs) are anchored onto red blood cells (RBCs) via the EDC/NHS-mediated amine coupling reaction. In this work, RBC-vaccines administered subcutaneously are primarily devoured by dendritic cells (DCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment by increasing the infiltration of intratumoral CD8+ and CD4+ T cells and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells in the CT-26 colon cancer model. Finally, based on the rejection of tumor rechallenge in cured mice, the combination therapy of RBC-vaccines and αPD-1 can induce the expansion of memory T cells and thereby establish a long-term antitumor immune response. Taken together, the proposed RBC-vaccines have great potential to improve chemoimmunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy, especially immune checkpoint blockade therapy, has made great contributions to the treatment of some advanced cancers. Unfortunately, the great majority of patients with cancer do not benefit from immunotherapy. To enhance the response rate of immunotherapy, we developed red blood cell-based vaccines (RBC-vaccines) against cancers where antigens were harvested from chemotherapy-treated cancer cells and then attached to erythrocytes via covalent surface modification. Such RBC-vaccines could provide a wide variety of tumor antigens and damage-associated molecular patterns without the use of any extra ingredients to trigger a stronger antitumor immune response. More importantly, the combination of RBC-vaccines with PD-1 blockade could significantly improve the efficacy of cancer immunotherapy and induce durable antitumor immunity.
Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Camundongos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Vacinas/farmacologia , Eritrócitos , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. RESULTS: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. METHODS: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. CONCLUSION: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteômica , Animais , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteômica/métodosRESUMO
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
RESUMO
AIMS: Interleukin (IL)-17 is associated with autoimmunity. This study aimed to affirm the role of IL-17A, IL-17F and single nucleotide polymorphisms (SNPs) in genes related to them and their receptors in autoimmune type 1 diabetes (T1D) for Chinese population. METHODS: In this study, 130 patients with autoimmune T1D and 140 non-T1D controls were included for analysis. Clinical and biochemical data were collected, and serum levels of IL-17A, IL-17F, IL-6, and high-sensitivity C reactive protein were measured using ELISA. The SNPs rs2275913, rs8193036, rs3819025, rs763780, rs879577, rs4819554, and rs708567 were genotyped using the SNaPshot assay. RESULTS: IL-17A levels were higher in patients with autoimmune T1D than in controls (median [IQR] 28.83[37.38] vs. 16.68[8.10], p < 0.001) and high IL-17A was a risk factor for autoimmune T1D (odds ratio (OR), 1.013; 95% CI, 1.003-1.023; p = 0.013) after adjusting for confounding factors. Linear regression analysis revealed that log10 IL-17A levels were independently associated with fasting C-peptide, IL-6, body mass index, and IL-17F. However, no independent association was found between IL-17F and autoimmune T1D. The GG genotype of SNP rs4819554 in the interleukin 17 receptor A (IL17RA) gene was associated with a decreased risk of autoimmune T1D (OR, 0.458; 95% CI, 0.246-0.852; p = 0.014) after adjusting for other confounders. The IL17RA rs4819554 GG genotype was negatively correlated with serum glutamic acid decarboxylase antibody appearance (p < 0.05). CONCLUSIONS: Increased serum IL-17A, but not IL-17F, is a risk factor for autoimmune T1D. The GG genotype of IL17RA rs4819554 might decrease the risk for autoimmune T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-17/sangue , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Humanos , Interleucina-17/genética , Interleucina-6 , Receptores de Interleucina-17/genéticaRESUMO
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Assuntos
Engenharia Biomédica , Nanoestruturas , Meios de Contraste , Imageamento por Ressonância Magnética , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanotecnologia/métodosRESUMO
As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by "biochemical injury", ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.