Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445387

RESUMO

BACKGROUND: Hypothermia therapy has been suggested to attenuate myocardial necrosis; however, the clinical implementation as a valid therapeutic strategy has failed, and new approaches are needed to translate into clinical applications. This study aimed to assess the feasibility, safety, and efficacy of a novel selective intracoronary hypothermia (SICH) device in mitigating myocardial reperfusion injury. METHODS: This study comprised two phases. The first phase of the SICH was performed in a normal porcine model for 30 minutes ( n = 5) to evaluate its feasibility. The second phase was conducted in a porcine myocardial infarction (MI) model of myocardial ischemia/reperfusion was performed by balloon occlusion of the left anterior descending coronary artery for 60 minutes and maintained for 42 days. Pigs in the hypothermia group ( n = 8) received hypothermia intervention onset reperfusion for 30 minutes and controls ( n = 8) received no intervention. All animals were followed for 42 days. Cardiac magnetic resonance analysis (5 and 42 days post-MI) and a series of biomarkers/histological studies were performed. RESULTS: The average time to lower temperatures to a steady state was 4.8 ± 0.8 s. SICH had no impact on blood pressure or heart rate and was safely performed without complications by using a 3.9 F catheter. Interleukin-6 (IL-6), tumor necrosis factor-α, C-reactive protein (CRP), and brain natriuretic peptide (BNP) were lower at 60 min post perfusion in pigs that underwent SICH as compared with the control group. On day 5 post MI/R, edema, intramyocardial hemorrhage, and microvascular obstruction were reduced in the hypothermia group. On day 42 post MI/R, the infarct size, IL-6, CRP, BNP, and matrix metalloproteinase-9 were reduced, and the ejection fraction was improved in pigs that underwent SICH. CONCLUSIONS: The SICH device safely and effectively reduced the infarct size and improved heart function in a pig model of MI/R. These beneficial effects indicate the clinical potential of SICH for treatment of myocardial reperfusion injury.

2.
Circ Cardiovasc Imaging ; 17(2): e016057, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38377235

RESUMO

BACKGROUND: Sex-specific differences in coronary phenotypes in response to stress have not been elucidated. This study investigated the sex-specific differences in the coronary computed tomography angiography-assessed coronary response to mental stress. METHODS: This retrospective study included patients with coronary artery disease and without cancer who underwent resting 18F-fluorodexoyglucose positron emission tomography/computed tomography and coronary computed tomography angiography within 3 months. 18F-flourodeoxyglucose resting amygdalar uptake, an imaging biomarker of stress-related neural activity, coronary inflammation (fat attenuation index), and high-risk plaque characteristics were assessed by coronary computed tomography angiography. Their correlation and prognostic values were assessed according to sex. RESULTS: A total of 364 participants (27.7% women and 72.3% men) were enrolled. Among those with heightened stress-related neural activity, women were more likely to have a higher fat attenuation index (43.0% versus 24.0%; P=0.004), while men had a higher frequency of high-risk plaques (53.7% versus 39.3%; P=0.036). High amygdalar 18F-flourodeoxyglucose uptake (B-coefficient [SE], 3.62 [0.21]; P<0.001) was selected as the strongest predictor of fat attenuation index in a fully adjusted linear regression model in women, and the first-order interaction term consisting of sex and stress-related neural activity was significant (P<0.001). Those with enhanced imaging biomarkers of stress-related neural activity showed increased risk of major adverse cardiovascular event both in women (24.5% versus 5.1%; adjusted hazard ratio, 3.62 [95% CI, 1.14-17.14]; P=0.039) and men (17.2% versus 6.9%; adjusted hazard ratio, 2.72 [95% CI, 1.10-6.69]; P=0.030). CONCLUSIONS: Imaging-assessed stress-related neural activity carried prognostic values irrespective of sex; however, a sex-specific mechanism linking psychological stress to coronary plaque phenotypes existed in the current hypothesis-generating study. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05545618.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Humanos , Masculino , Biomarcadores , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários , Inflamação , Fenótipo , Valor Preditivo dos Testes , Estudos Retrospectivos , Caracteres Sexuais
3.
JACC Cardiovasc Imaging ; 16(11): 1404-1415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37269269

RESUMO

BACKGROUND: Stress-related neural activity (SNA) assessed by amygdalar activity can predict cardiovascular events. However, its mechanistic linkage with plaque vulnerability is not fully elucidated. OBJECTIVES: The authors aimed to investigate the association of SNA with coronary plaque morphologic and inflammatory features as well as their ability in predicting major adverse cardiovascular events (MACE). METHODS: A total of 299 patients with coronary artery disease (CAD) and without cancer underwent 18F-fluorodexoyglucose positron emission tomography/computed tomography (PET/CT) and available coronary computed tomographic angiography (CCTA) between January 1, 2013, and December 31, 2020. SNA and bone-marrow activity (BMA) were assessed with validated methods. Coronary inflammation (fat attenuation index [FAI]) and high-risk plaque (HRP) characteristics were assessed by CCTA. Relations between these features were analyzed. Relations between SNA and MACE were assessed with Cox models, log-rank tests, and mediation (path) analyses. RESULTS: SNA was significant correlated with BMA (r = 0.39; P < 0.001) and FAI (r = 0.49; P < 0.001). Patients with heightened SNA are more likely to have HRP (40.7% vs 23.5%; P = 0.002) and increase risk of MACE (17.2% vs 5.1%, adjusted HR 3.22; 95% CI: 1.31-7.93; P = 0.011). Mediation analysis suggested that higher SNA associates with MACE via a serial mechanism involving BMA, FAI, and HRP. CONCLUSIONS: SNA is significantly correlated with FAI and HRP in patients with CAD. Furthermore, such neural activity was associated with MACE, which was mediated in part by leukopoietic activity in the bone marrow, coronary inflammation, and plaque vulnerability.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Placa Aterosclerótica , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Valor Preditivo dos Testes , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/complicações , Angiografia por Tomografia Computadorizada/métodos , Inflamação/complicações , Angiografia Coronária/métodos , Estenose Coronária/complicações , Prognóstico , Vasos Coronários/diagnóstico por imagem
4.
Circ Res ; 132(11): e223-e242, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154056

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-STING (stimulator of interferon genes) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC). METHODS: Mice were treated with low-dose doxorubicin to induce chronic DIC. The role of the cGAS-STING pathway in DIC was evaluated in cGAS-deficiency (cGAS-/-), Sting-deficiency (Sting-/-), and interferon regulatory factor 3 (Irf3)-deficiency (Irf3-/-) mice. Endothelial cell (EC)-specific conditional Sting deficiency (Stingflox/flox/Cdh5-CreERT) mice were used to assess the importance of this pathway in ECs during DIC. We also examined the direct effects of the cGAS-STING pathway on nicotinamide adenine dinucleotide (NAD) homeostasis in vitro and in vivo. RESULTS: In the chronic DIC model, we observed significant activation of the cGAS-STING pathway in cardiac ECs. Global cGAS, Sting, and Irf3 deficiency all markedly ameliorated DIC. EC-specific Sting deficiency significantly prevented DIC and endothelial dysfunction. Mechanistically, doxorubicin activated the cardiac EC cGAS-STING pathway and its target, IRF3, which directly induced CD38 expression. In cardiac ECs, the cGAS-STING pathway caused a reduction in NAD levels and subsequent mitochondrial dysfunction via the intracellular NAD glycohydrolase (NADase) activity of CD38. Furthermore, the cardiac EC cGAS-STING pathway also regulates NAD homeostasis and mitochondrial bioenergetics in cardiomyocytes through the ecto-NADase activity of CD38. We also demonstrated that pharmacological inhibition of TANK-binding kinase 1 or CD38 effectively ameliorated DIC without compromising the anticancer effects of doxorubicin. CONCLUSIONS: Our findings indicate a critical role of the cardiac EC cGAS-STING pathway in DIC. The cGAS-STING pathway may represent a novel therapeutic target for preventing DIC.


Assuntos
Cardiotoxicidade , Transdução de Sinais , Camundongos , Animais , NAD/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Doxorrubicina/toxicidade
5.
Antioxidants (Basel) ; 11(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36139912

RESUMO

Skeletal muscle atrophy is an important characteristic of cachexia, which can be induced by chemotherapy and significantly contributes to functional muscle impairment. Inflammation and oxidative stress are believed to play important roles in the muscle atrophy observed in cachexia, but whether programmed cell death protein 1 (PD-1) is affected by this condition remains unclear. PD-1 is a membrane protein that is expressed on the surface of many immune cells and plays an important role in adaptive immune responses and autoimmunity. Thus, we investigated the role and underlying mechanism of PD-1 in cisplatin-induced muscle atrophy in mice. We found that PD-1 knockout dramatically contributed to skeletal muscle atrophy. Mechanistically, we found that E3 ubiquitin-protein ligases were significantly increased in PD-1 knockout mice after cisplatin treatment. In addition, we found that PD-1 knockout significantly exacerbated cisplatin-induced skeletal muscle inflammation and oxidative stress. Moreover, we found that there were significant increases in ferroptosis-related and autophagy-related genes in PD-1 knockout mice after cisplatin treatment. These data indicate that PD-1 plays an important role in cisplatin-induced skeletal muscle atrophy.

6.
Circulation ; 145(9): 659-674, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100526

RESUMO

BACKGROUND: The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS: Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (ß-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvß3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS: Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvß3 in VSMCs and blocked integrin αvß3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS: LGMN signaling may be a novel target for the prevention and treatment of TAD.


Assuntos
Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Cisteína Endopeptidases/metabolismo , Integrina alfaVbeta3/metabolismo , Amidas/farmacologia , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/genética , Animais , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/genética , Cisteína Endopeptidases/genética , Feminino , Humanos , Integrina alfaVbeta3/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
7.
Clin Transl Med ; 10(5): e172, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32997407

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have therapeutic potential for multiple ischemic diseases. However, in vitro expansion of MSCs before clinical application leads to metabolic reprogramming from glycolysis to oxidative phosphorylation, drastically impairing their proliferative and therapeutic capacities. This study aimed to define the regulatory effects of Sirtuin 5 (SIRT5) on the proliferative and therapeutic functions of adipose-derived MSCs (ADMSCs) during in vitro expansion. METHODS: ADMSCs were isolated from wild-type (WT) and Sirt5-knockout (Sirt5-/- ) mice. Cell counting assay was used to investigate the proliferative capacities of the ADMSCs. Dihydroethidium and senescence-associated ß-galactosidase stainings were used to measure intracellular ROS and senescence levels. Mass spectrometry was used to analyze protein succinylation. Oxygen consumption rates and extra cellular acidification rates were measured as indicators of mitochondrial respiration and glycolysis. Metabolic-related genes expression were verified by quantitative PCR and western blot. Hind limb ischemia mouse model was used to evaluate the therapeutic potentials of WT and Sirt5-/- ADSMCs. RESULTS: SIRT5 protein levels were upregulated in ADMCs during in vitro expansion. Sirt5-/- ADMSCs exhibited a higher proliferation rate, delayed senescence, and reduced ROS accumulation. Furthermore, elevated protein succinylation levels were observed in Sirt5-/- ADMSCs, leading to the reduced activity of tricarboxylic acid cycle-related enzymes and attenuated mitochondrial respiration. Glucose uptake, glycolysis, and pentose phosphate pathway were elevated in Sirt5-/- ADMSCs. Inhibition of succinylation by glycine or re-expression of Sirt5 reversed the metabolic alterations in Sirt5-/- ADMSCs, thus abolishing their enhanced proliferative capacities. In the hind limb ischemia mouse model, SIRT5-/- ADMSCs transplantation enhanced blood flow recovery and angiogenesis compared with WT ADMSCs. CONCLUSIONS: Our results indicate that SIRT5 deficiency during ADMSC culture expansion leads to reversed metabolic pattern, enhanced proliferative capacities, and improved therapeutic outcomes. These data suggest SIRT5 as a potential target to enhance the functional properties of MSCs for clinical application.

8.
J Mol Cell Cardiol ; 137: 107-118, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668970

RESUMO

Cardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload-induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown. This study aimed to investigate the effect of ALDH2 deficiency on cardiac fibrosis in transverse aortic constriction (TAC) induced pressure overload model in mice. Echocardiography and histological analysis revealed cardiac dysfunction and enhanced cardiac fibrosis in TAC-operated animals; ALDH2 deficiency further aggravated these changes. ALDH2 chimeric mice were generated by bone marrow (BM) transplantation of WT mice into the lethally irradiated ALDH2KO mice. The proportion of circulating fibroblast progenitor cells (FPCs) and ROS level in BM after TAC were significantly higher in ALDH2KO mice than in ALDH2 chimeric mice. Furthermore, FPCs were isolated and cultured for in vitro mechanistic studies. The results showed that the stem cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) axis played a major role in the recruitment of FPCs. In conclusion, our research reveals that increased bone marrow FPCs mobilization and myocardial homing contribute to the enhanced cardiac fibrosis and dysfunction induced by TAC in ALDH2 KO mice via exacerbating accumulation of ROS in BM and myocardial SDF-1 expression.


Assuntos
Aldeído-Desidrogenase Mitocondrial/deficiência , Células da Medula Óssea/patologia , Fibroblastos/patologia , Miocárdio/patologia , Células-Tronco/patologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Animais Recém-Nascidos , Polaridade Celular , Proliferação de Células , Quimiocina CXCL12/metabolismo , Constrição Patológica , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo , Receptores CXCR4/metabolismo , Transdução de Sinais
9.
Cell Death Dis ; 10(6): 422, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142732

RESUMO

The role of M1 macrophages (M1M)-derived exosomes in the progression of neointimal hyperplasia remains unclear now. Using a transwell co-culture system, we demonstrated that M1M contributed to functional change of vascular smooth muscle cell (VSMC). We further stimulated VSMCs with exosomes isolated from M1M. Our results demonstrated that these exosomes could be taken up by VSMCs through macropinocytosis. Using a microRNA array assay, we identified that miR-222 originated from M1M-derived exosomes triggered the functional changes of VSMCs. In addition, we confirmed that miR-222 played a key role in promoting VSMCs proliferation and migration by targeting Cyclin Dependent Kinase Inhibitor 1B (CDKN1B) and Cyclin Dependent Kinase Inhibitor 1C (CDKN1C) in vitro. In vivo, M1M-derived exosomes significantly aggravated neointima formation following carotid artery ligation injury and wire injury and these effects were partly abolished by miR-222 inhibitor 2'OMe-miR-222. Our findings thus suggest that exosomes derived from M1M could aggravate neointimal hyperplasia through delivering miR-222 into VSMCs. Future studies are warranted to validate if the post-injury vascular neointimal hyperplasia and restenosis could be attenuated by inhibiting miR-222.


Assuntos
Lesões das Artérias Carótidas/patologia , Exossomos/metabolismo , Hiperplasia/patologia , Transdução de Sinais , Regiões 3' não Traduzidas , Compostos de Anilina/farmacologia , Animais , Antagomirs/metabolismo , Compostos de Benzilideno/farmacologia , Lesões das Artérias Carótidas/veterinária , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/química , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Exossomos/transplante , Hiperplasia/veterinária , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Células RAW 264.7
10.
Circ Res ; 124(9): 1323-1336, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30832557

RESUMO

RATIONALE: Targeting inflammation has been shown to provide clinical benefit in the field of cardiovascular diseases. Although manipulating regulatory T-cell function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. IL (interleukin)-35, an immunosuppressive cytokine mainly produced by regulatory T cells, is a novel member of the IL-12 family and is composed of an EBI3 (Epstein-Barr virus-induced gene 3) subunit and a p35 subunit. However, the role of IL-35 in infarct healing remains elusive. OBJECTIVE: This study aimed to determine whether IL-35 signaling is involved in healing and cardiac remodeling after myocardial infarction (MI) and, if so, to elucidate the underlying molecular mechanisms. METHODS AND RESULTS: IL-35 subunits (EBI3 and p35), which are mainly expressed in regulatory T cells, were upregulated in mice after MI. After IL-35 inhibition, mice showed impaired infarct healing and aggravated cardiac remodeling, as demonstrated by a significant increase in mortality because of cardiac rupture, decreased wall thickness, and worse cardiac function compared with wild-type MI mice. IL-35 inhibition also led to decreased expression of α-SMA (α-smooth muscle actin) and collagen I/III in the hearts of mice after MI. Pharmacological inhibition of IL-35 suppressed the accumulation of Ly6Clow and major histocompatibility complex IIlow/C-C motif chemokine receptor type 2- (MHC IIlow CCR2-) macrophages in infarcted hearts. IL-35 activated transcription of CX3CR1 (C-X3-C motif chemokine receptor 1) and TGF (transforming growth factor) ß1 in macrophages by inducing GP130 signaling, via IL12Rß2 and phosphorylation of STAT1 (signal transducer and activator of transcription family) and STAT4 and subsequently promoted Ly6Clow macrophage survival and extracellular matrix deposition. Moreover, compared with control MI mice, IL-35-treated MI mice showed increased expression of α-SMA and collagen within scars, correlating with decreased left ventricular rupture rates. CONCLUSIONS: IL-35 reduces cardiac rupture, improves wound healing, and attenuates cardiac remodeling after MI by promoting reparative CX3CR1+Ly6Clow macrophage survival.


Assuntos
Interleucinas/fisiologia , Macrófagos/fisiologia , Infarto do Miocárdio/fisiopatologia , Cicatrização/fisiologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/farmacologia , Receptor 1 de Quimiocina CX3C/biossíntese , Receptor 1 de Quimiocina CX3C/genética , Sobrevivência Celular , Cicatriz/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Regulação da Expressão Gênica/fisiologia , Ruptura Cardíaca Pós-Infarto/fisiopatologia , Ruptura Cardíaca Pós-Infarto/prevenção & controle , Interleucinas/antagonistas & inibidores , Interleucinas/biossíntese , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Miocárdio/metabolismo , Receptores de Citocinas/antagonistas & inibidores , Receptores de Citocinas/biossíntese , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Regulação para Cima , Remodelação Ventricular/fisiologia
11.
J Mol Cell Cardiol ; 128: 105-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707992

RESUMO

While most mitochondrial proteins are encoded in the nucleus and translated on cytosolic/endoplasmic reticulum ribosomes, proteins encoded by mitochondrial DNA are translated on mitochondrial ribosomes. Mitochondrial GTPases 1 (MTG1) regulates mitochondrial ribosome assembly and translation, but its impact on cardiac adaptation to stress is unknown. Here, we found that MTG1 is dramatically elevated in hearts of dilated cardiomyopathy patients and in mice exposed to left ventricular pressure overload (AB). To examine the role of MTG1 in cardiac hypertrophy and heart failure, MTG1 loss/gain of function studies were performed in cultured cardiomyocytes and mice exposed to hypertrophic stress. MTG1 shRNA and adenoviral overexpression studies indicated that MTG1 expression attenuates angiotensin II-induced hypertrophy in cultured cardiomyocytes, while MTG1 KO mice exhibited no observable cardiac phenotype under basal conditions. MTG1 deficiency significantly exacerbated AB-induced cardiac hypertrophy, expression of hypertrophic stress markers, fibrosis, and LV dysfunction in comparison to WT mice. Conversely, transgenic cardiac MTG1 expression attenuated AB-induced hypertrophy and LV dysfunction. Mechanistically, MTG1 preserved mitochondrial respiratory chain complex activity during pressure overload, which further attenuated ROS generation. Moreover, we demonstrated that TAK1, P38 and JNK1/2 activity is downregulated in the MTG1 overexpression group. Importantly, dampening oxidative stress with N-acetylcysteine (NAC) lowered hypertrophy in MTG1 KO to WT levels. Collectively, our data indicate that MTG1 protects against pressure overload-induced cardiac hypertrophy and dysfunction by preserving mitochondrial function and reducing oxidative stress and downstream TAK1 stress signaling.


Assuntos
Cardiomiopatia Dilatada/genética , GTP Fosfo-Hidrolases/genética , Insuficiência Cardíaca/genética , MAP Quinase Quinase Quinases/genética , Angiotensina II/genética , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética
12.
Circulation ; 138(24): 2820-2836, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30018168

RESUMO

BACKGROUND: Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS: We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS: Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS: Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.


Assuntos
Macrófagos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , NADPH Oxidases/metabolismo , Transativadores/genética , Anilidas/farmacologia , Animais , Benzamidas/farmacologia , Células da Medula Óssea/citologia , Cromatina/química , Cromatina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Histonas/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , NADPH Oxidases/genética , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Salicilatos/farmacologia , Transativadores/antagonistas & inibidores
13.
Basic Res Cardiol ; 112(3): 25, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349258

RESUMO

Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c+ DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c+ cells and the percentage of CD11c+ MHCII+ (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c+ DC ablation model, we found that depletion of bone marrow-derived CD11c+ DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c+ DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45+ cells, CD11b+ cells, CD8+ T cells and activated effector CD8+CD44+ T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c+ DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.


Assuntos
Células Dendríticas/imunologia , Hipertrofia Ventricular Esquerda/imunologia , Ativação Linfocitária/imunologia , Remodelação Ventricular/imunologia , Animais , Apresentação de Antígeno/imunologia , Células da Medula Óssea/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD8-Positivos/imunologia , Cardiomegalia/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia
14.
J Mol Cell Cardiol ; 80: 23-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446178

RESUMO

Angiotensin II (Ang II) stimulates endothelin (ET-1) transcription, which contributes to cardiac hypertrophy and fibrosis. We have previously reported that myocardin related transcription factor A (MRTF-A) is indispensable for ET-1 transcription in vascular endothelial cells under hypoxic conditions, indicating that MRTF-A might mediate Ang II-induced pathological hypertrophy. Here we report that Ang II augmented the expression of MRTF-A in cultured endothelial cells and in the lungs of mice with cardiac hypertrophy. Over-expression of MRTF-A enhanced, whereas depletion of MRTF-A attenuated, transcriptional activation of ET-1 gene by Ang II. MRTF-A deficiency ameliorated Ang II induced cardiac hypertrophy and fibrosis in mice paralleling diminished synthesis and release of ET-1. Mechanistically, MRTF-A was recruited to the ET-1 promoter by c-Jun/c-Fos (AP-1) in response to Ang II treatment. Once bound, MRTF-A altered the chromatin structure by modulating histone acetylation and H3K4 methylation on the ET-1 promoter. More importantly, mice with endothelial-specific MRTF-A silencing by lentiviral particles phenocopied mice with systemic MRTF-A deletion in terms of Ang II-induced pathological hypertrophy. In conclusion, we data have unveiled a MRTF-A-containing complex that links ET-1 transactivation in endothelial cells to cardiac hypertrophy and fibrosis by Ang II.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Endotélio Vascular/metabolismo , Transativadores/genética , Transativadores/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Cardiomegalia/patologia , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Epigênese Genética , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ativação Transcricional
15.
Circ Res ; 113(8): 986-96, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23963727

RESUMO

RATIONALE: Endothelial dysfunction inflicted by inflammation is found in a host of cardiovascular pathologies. One hallmark event in this process is the aggregation and adhesion of leukocyte to the vessel wall mediated by the upregulation of adhesion molecules (CAM) in endothelial cells at the transcriptional level. The epigenetic modulator(s) of CAM transactivation and its underlying pathophysiological relevance remain poorly defined. OBJECTIVE: Our goal was to determine the involvement of Brahma related gene 1 (Brg1) and Brahma (Brm) in CAM transactivation and its relevance in the pathogenesis of atherosclerosis. METHODS AND RESULTS: In the present study, we report that proinflammatory stimuli augmented the expression of Brg1 and Brm in vitro in cultured endothelial cells and in vivo in arteries isolated from rodents. Overexpression of Brg1 and Brm promoted while knockdown of Brg1 and Brm abrogated transactivation of adhesion molecules and leukocyte adhesion induced by inflammatory signals. Brg1 and Brm interacted with and were recruited to the CAM promoters by nuclear factor κB/p65. Conversely, depletion of Brg1 and Brm disrupted the kinetics of p65 binding on CAM promoters and crippled CAM activation. Silencing of Brg1 and Brm also altered key epigenetic changes associated with CAM transactivation. Of intrigue, 17ß-estradiol antagonized both the expression and activity of Brg1/Brm. Most importantly, endothelial-targeted elimination of Brg1/Brm conferred atheroprotective effects to Apoe(-/-) mice on a Western diet. CONCLUSIONS: Our data suggest that Brg1 and Brm integrate various proinflammatory cues into CAM transactivation and endothelial malfunction and, as such, may serve as potential therapeutic targets in treating inflammation-related cardiovascular diseases.


Assuntos
DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Sítios de Ligação , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , DNA Helicases/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Epigênese Genética , Estradiol/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/imunologia , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA