Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834377

RESUMO

The herbal medicine perilla leaf extract (PLE) exhibits various pharmacological properties. We showed that PLE inhibits the viability of oral squamous cell carcinoma (OSCC) cells. HPLC analysis revealed that caffeic acid (CA) and rosmarinic acid (RA) are the two main phenols in PLE, and reduced OSCC cell viability in a dose-dependent manner. The optimal CA/RA combination ratio was 1:2 at concentrations of 300-500 µM but had no synergistic inhibitory effect on the viability of OSCC cells. CA, RA, or their combination effectively suppressed interleukin (IL)-1ß secretion by OSCC OC3 cells. Long-term treatment with CA and CA/RA mixtures, respectively, induced EGFR activation, which might cause OC3 cells to become EGFR-dependent and consequently increased the sensitivity of OC3 cells to a low dose (5 µM) of the EGFR tyrosine kinase inhibitor gefitinib. Chronic treatment with CA, RA, or their combination exhibited an inhibitory effect more potent than that of low-dose (1 µM) cisplatin on the colony formation ability of OSCC cells; this may be attributed to the induction of apoptosis by these treatments. These findings suggest that perilla phenols, particularly CA and RA, can be used as adjuvant therapies to improve the efficacy of chemotherapy and EGFR-targeted therapy in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Perilla , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Receptores ErbB , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
2.
PLoS One ; 18(5): e0285217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155619

RESUMO

Apical-basal cell polarity must be tightly controlled for epithelial cyst and tubule formation, and these are important functional units in various epithelial organs. Polarization is achieved through the coordination of several molecules that divide cells into an apical domain and a basolateral domain, which are separated from tight and adherens junctions. Cdc42 regulates cytoskeletal organization and the tight junction protein ZO-1 at the apical margin of epithelial cell junctions. MST kinases control organ size through the regulation of cell proliferation and cell polarity. For example, MST1 relays the Rap1 signal to induce cell polarity and adhesion of lymphocytes. Our previous study showed that MST3 was involved in E-cadherin regulation and migration in MCF7 cells. In vivo, MST3 knockout mice exhibited higher ENaC expression at the apical site of renal tubules, resulting in hypertension. However, it was not clear whether MST3 was involved in cell polarity. Here, control MDCK cells, HA-MST3 and HA-MST3 kinase-dead (HA-MST3-KD) overexpressing MDCK cells were cultured in collagen or Matrigel. We found that the cysts of HA-MST3 cells were fewer and smaller than those of control MDCK cells; ZO-1 was delayed to the apical site of cysts and in cell-cell contact in the Ca2+ switch assay. However, HA-MST3-KD cells exhibited multilumen cysts. Intensive F-actin stress fibers were observed in HA-MST3 cells with higher Cdc42 activity; in contrast, HA-MST3-KD cells had lower Cdc42 activity and weaker F-actin staining. In this study, we identified a new MST3 function in the establishment of cell polarity through Cdc42 regulation.


Assuntos
Cistos , Células Epiteliais , Animais , Camundongos , Actinas/metabolismo , Polaridade Celular/fisiologia , Cistos/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo
3.
Phytomedicine ; 46: 184-192, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097117

RESUMO

BACKGROUND: Pancreatic cancer (PC) remains the leading cause of cancer mortality, with limited therapeutic targets, and alterations in endoplasmic reticulum (ER)-related proteostasis may be a potential target for therapy. The root bark of Paeonia suffruticosa has been shown to inhibit cancer growth and metastasis, although its impact on PC is unknown. PURPOSE: To ascertain the anti-cancer effects of P. suffruticosa on oncogenic functions of PC and determine the detailed molecular mechanisms. STUDY DESIGN: Efficacy assessment of extracts, in vitro using PC cells as a model system and in vivo in mouse xenograft tumors. METHODS: P. suffruticosa aqueous extracts (PS) were prepared and assessed using liquid chromatography-tandem mass spectrometry. Cell viability, proteins, and cell components were measured using MTT assay, western blotting, and immunofluorescence. Cell apoptosis, cell cycle, and migration were assessed using colorimetric assays, fluorescence activated cell sorting, and transwell migration. Reactive oxygen species (ROS) were evaluated with a commercial 2'-7'-dichlorofluorescin diacetate kit. For the xenograft model, AsPC1 cells were inoculated subcutaneously into immunocompromised mice and PS (oral) was administered over 3 weeks with or without gemcitabine (GEM, intraperitoneal), a first-line advanced/metastatic PC therapy. RESULTS: PS stimulated ER stress and affected mitochondrial membrane potential to increase autophagosome numbers and block their degradation, followed by autophagy induction and finally cell apoptosis. Additionally, PS-mediated proteostasis impairment resulted in altered dynamics of the actin cytoskeleton, cell motility impairment, and cell cycle progression inhibition. Conversely, a ROS scavenger partially reversed PS-mediated degradation of peptidyl-prolyl cis-trans isomerase B (PPIB), an ER protein important for protein folding, suggesting that ROS generation by PS may be the upstream of PS-triggering of mitophagy and final cell apoptosis. Nevertheless, oral administration of PS, alone or in combination with GEM, delayed tumor growth in a xenograft model without affecting body weight. CONCLUSION: These findings indicate that PS may constitute a potential new alternative or complementary medicine for PC.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Paeonia/química , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteostase/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 9(1): 361-374, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416619

RESUMO

Epigenome aberrations have been observed in tobacco-associated human malignancies. (-)-epigallocatechin-3-gallate (EGCG) has been proven to modulate gene expression by targeting DNA methyltransferases (DNMTs) through a proposed mechanism involving the gallate moiety of EGCG. We show that gallic acid (GA) changes the methylome of lung cancer and pre-malignant oral cell lines and markedly reduces both nuclear and cytoplasmic DNMT1 and DNMT3B within 1 week. GA exhibits stronger cytotoxicity against the lung cancer cell line H1299 than EGCG. We found that GA reactivates the growth arrest and DNA damage-inducible 45 (GADD45) signaling pathway may through the demethylation of CCNE2 and CCNB1 in H1299 cells. To improve the epigenetic anti-cancer activities of oolong tea, we identified a fungus, Aspergillus sojae which can efficiently increase the GA content in oolong tea via a 2-week fermentation process. The fungus dramatically increased GA up to 44.8 fold in the post-fermentation oolong tea extract (PFOTE), resulting in enhanced demethylation effects and a significant reduction in the nuclear abundances of DNMT1, DNMT3A, and DNMT3B in lung cancer cell lines. PFOTE also showed stronger anti-proliferation activities than oolong tea extract (OTE) and increased sensitivity to cisplatin in H1299 cells. In summary, we demonstrate the potent inhibitory effects of GA on the activities of DNMTs and provide a strong scientific foundation for the use of specialized fermented oolong tea high in GA as an effective dietary intervention strategy for tobacco-associated cancers.

5.
Sci Rep ; 7: 41437, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134285

RESUMO

Hepatocellular carcinoma (HCC) remains the leading cause of cancer mortality with limited therapeutic targets. The endoplasmic reticulum (ER) plays a pivotal role in maintaining proteostasis in normal cells. However, alterations in proteostasis are often found in cancer cells, making it a potential target for therapy. Polygonum bistorta is used in traditional Chinese medicine owing to its anticancer activities, but the molecular and pharmacological mechanisms remain unclear. Using hepatoma cells as a model system, this study demonstrated that P. bistorta aqueous extract (PB) stimulated ER stress by increasing autophagosomes but by blocking degradation, followed by the accumulation of ubiquitinated proteins and cell apoptosis. In addition, an autophagy inhibitor did not enhance ubiquitinated protein accumulation whereas a reactive oxygen species (ROS) scavenger diminished both ubiquitinated protein accumulation and ligand-stimulated epidermal growth factor receptor (EGFR) expression, suggesting that ROS generation by PB may be upstream of PB-triggered cell death. Nevertheless, PB-exerted proteostasis impairment resulted in cytoskeletal changes, impairment of cell adhesion and motility, and inhibition of cell cycle progression. Oral administration of PB delayed tumour growth in a xenograft model without significant body weight loss. These findings indicate that PB may be a potential new alternative or complementary medicine for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Extratos Vegetais/farmacologia , Polygonum/química , Proteostase/efeitos dos fármacos , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Inorg Biochem ; 160: 33-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27118027

RESUMO

The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Tirosina/metabolismo , Vanadatos/farmacologia , Sequência de Aminoácidos , Animais , Cães , Ensaios Enzimáticos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Células Madin Darby de Rim Canino , Concentração Osmolar , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
7.
PLoS One ; 9(7): e103251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061857

RESUMO

Human stem cell factor initiates a diverse array of cellular responses, including hematopoiesis, cell proliferation, differentiation, migration and survival. To explore the relationship between its structure and function, we produced recombinant soluble human stem cell factor1-165 (wild type) and human stem cell factor1-141 (C-terminal truncated) in a yeast expression system and compared their biological activities and thermal stabilities. The biological activity of the two proteins was measured as a function of TF-1 cell viability and effects on downstream signaling targets after incubation. We found that these proteins enhanced cell viability and downstream signaling to a similar extent, in a dose-dependent manner. The biological activity of recombinant human stem cell factor1-165 was significantly greater than that of recombinant human stem cell factor1-141 after heating the proteins (100 ng/mL) at 25-110°C for 10 minutes (P<0.05 for all temperatures). In addition, circular dichroism spectral analysis indicated that ß-sheet structures were altered in recombinant human stem cell factor1-141 but not recombinant human stem cell factor1-165 after heating at 90°C for 15 or 30 min. Molecular modeling and limited proteolytic digestion were also used to compare the thermo stability between human stem cell factor1-165 and human stem cell factor1-141. Together, these data indicate that stem cell factor1-165 is more thermostable than stem cell factor1-141.


Assuntos
Isoformas de Proteínas/genética , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Fator de Células-Tronco/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Dicroísmo Circular , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Fator de Células-Tronco/química , Fator de Células-Tronco/genética , Temperatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-22693529

RESUMO

Lung cancer has long been one of the most deadly forms of cancer. The majority of lung cancers are of the non-small-cell lung cancer (NSCLC) type. Here we used the non-small-cell lung carcinoma cell line A549 to screen 15 different traditional Chinese herbal medicine (CHM) formulae to explore the possible mechanisms of alternative medicine in lung cancer therapy. We identified three formulae (Formulae 3, 5, and 14) that substantially decreased the survival of A549 cells but did not affect MRC5 normal lung tissue cells. Formula 14, Yang-Dan-Tang, a modified decoction of Ramulus Cinnamomi Cassiae, was chosen for further characterization. Flow cytometry analysis showed that treatment of Formula 14 induced cell cycle arrest in G1 and G2 phase without causing significant cell death. These results were also confirmed by Western blot analysis, with decreased expression of G1/S and G2/M promoting cell cycle machinery including cyclin D3, cyclin B1, CDK4, and CDK6. This study provides further insight into the possible working mechanism of Yang-Dan-Tang in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA