Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31883839

RESUMO

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Assuntos
Complemento C3/imunologia , Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Sinapses/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Callithrix , Linhagem Celular Tumoral , Complemento C3/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Gliose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de Complemento 3b/metabolismo
2.
Nature ; 573(7772): 75-82, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31316211

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.


Assuntos
Linhagem da Célula , Esclerose Múltipla/patologia , Neurônios/patologia , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Criopreservação , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fagocitose , RNA Nuclear Pequeno/análise , RNA Nuclear Pequeno/genética , RNA-Seq , Transcriptoma/genética
3.
J Neurosci ; 37(34): 8131-8141, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28760868

RESUMO

Polysialic acid is a glycan modification of the neural cell adhesion molecule (NCAM) produced by the polysialyltransferases ST8SIA2 and ST8SIA4. Polysialic acid has been detected in multiple sclerosis plaques, but its beneficial or adverse role in remyelination is elusive. Here, we show that, despite a developmental delay, myelination at the onset and during cuprizone-induced demyelination was unaffected in male Ncam1-/- or St8sia2-/- mice. However, remyelination, restoration of oligodendrocyte densities, and motor recovery after the cessation of cuprizone treatment were compromised. Impaired differentiation of NCAM- or ST8SIA2-negative oligodendrocyte precursors suggested an underlying cell-autonomous mechanism. In contrast, premature differentiation in ST8SIA4-negative cultures explained the accelerated remyelination previously observed in St8sia4-/- mice. mRNA profiling during differentiation of human stem cell-derived and primary murine oligodendrocytes indicated that the opposing roles of ST8SIA2 and ST8SIA4 arise from sequential expression. We also provide evidence that potentiation of ST8SIA2 by 9-cis-retinoic acid and artificial polysialylation of oligodendrocyte precursors by a bacterial polysialyltransferase are mechanisms to promote oligodendrocytic differentiation. Thus, differential targeting of polysialyltransferases and polysialic acid engineering are promising strategies to advance the treatment of demyelinating diseases.SIGNIFICANCE STATEMENT The beneficial or adverse role of polysialic acid (polySia) in myelin repair is a long-standing question. As a modification of the neural cell adhesion molecule (NCAM), polySia is produced by the polysialyltransferases ST8SIA2 and ST8SIA4. Here we demonstrate that NCAM and ST8SIA2 promote oligodendrocyte differentiation and myelin repair as well as motor recovery after cuprizone-induced demyelination. In contrast, ST8SIA4 delays oligodendrocyte differentiation, explaining its adverse role in remyelination. These opposing roles of the polysialyltransferases are based on different expression profiles. 9-cis-retinoic acid enhances ST8SIA2 expression, providing a mechanism for understanding how it supports oligodendrocyte differentiation and remyelination. Furthermore, artificial polysialylation of the cell surface promotes oligodendrocyte differentiation. Thus, boosting ST8SIA2 and engineering of polySia are promising strategies for improving myelin repair.


Assuntos
Antígeno CD56/biossíntese , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Sialiltransferases/biossíntese , Animais , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Células-Tronco Embrionárias/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Molécula L1 de Adesão de Célula Nervosa , Distribuição Aleatória , Ácidos Siálicos/biossíntese
4.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27444013

RESUMO

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

5.
Glia ; 64(8): 1314-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27159043

RESUMO

Microglia are tissue macrophages and mediators of innate immune responses in the brain. The protein-modifying glycan polysialic acid (polySia) is implicated in modulating microglia activity. Cultured murine microglia maintain a pool of Golgi-confined polySia, which is depleted in response to lipopolysaccharide (LPS)-induced activation. Polysialylated neuropilin-2 (polySia-NRP2) contributes to this pool but further polySia protein carriers have remained elusive. Here, we use organotypic brain slice cultures to demonstrate that injury-induced activation of microglia initiates Golgi-confined polySia expression in situ. An unbiased glycoproteomic approach with stem cell-derived microglia identifies E-selectin ligand-1 (ESL-1) as a novel polySia acceptor. Together with polySia-NRP2, polySia-ESL-1 is also detected in primary cultured microglia, in brain slice cultures and in phorbol ester-induced THP-1 macrophages. Induction of stem cell-derived microglia, activated microglia in brain slice cultures and THP-1 macrophages by LPS, but not interleukin-4, causes polySia depletion and, as shown for stem cell-derived microglia, a metalloproteinase-dependent release of polySia-ESL-1 and polySia-NRP2. Moreover, soluble polySia attenuates LPS-induced production of nitric oxide and proinflammatory cytokines. Thus, shedding of polySia-ESL-1 and polySia-NRP2 after LPS-induced activation of microglia and THP-1 macrophages may constitute a mechanism for negative feedback regulation. GLIA 2016 GLIA 2016;64:1314-1330.


Assuntos
Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Microglia/imunologia , Neuropilina-2/metabolismo , Polissacarídeos/toxicidade , Células THP-1/imunologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Escherichia coli , Humanos , Macrófagos/patologia , Camundongos Knockout , Microglia/patologia , Moléculas de Adesão de Célula Nervosa/deficiência , Moléculas de Adesão de Célula Nervosa/genética , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/patologia , Óxido Nítrico/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Sialoglicoproteínas/metabolismo , Sialiltransferases/deficiência , Sialiltransferases/genética , Células THP-1/patologia , Técnicas de Cultura de Tecidos
6.
Stem Cell Res ; 14(3): 339-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25863442

RESUMO

Oligodendrocyte precursor cells (OPCs) are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia) is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Bainha de Mielina/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Oligodendroglia/citologia , Ácidos Siálicos/metabolismo , Adesão Celular , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/química , Células Cultivadas , Regulação para Baixo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Imunoglobulinas/química
7.
Glia ; 63(7): 1240-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752299

RESUMO

NG2 cells comprise a heterogeneous precursor population but molecular markers distinguishing between the assumed NG2 cell subpopulations are lacking. Previously, we described that a subfraction of the synaptic cell adhesion molecule SynCAM 1 is modified with the glycan polysialic acid (polySia) in NG2 cells. As for its major carrier, the neural cell adhesion molecule NCAM, polySia attenuates SynCAM 1 adhesion. Functions, as well as cellular and subcellular distribution of polySia-SynCAM 1 are elusive. Using murine glial cultures we now demonstrate that polySia-SynCAM 1 is confined to the Golgi compartment of a subset of NG2 cells and transiently recruited to the cell surface in response to depolarization. NG2 cells with Golgi-confined polySia were NCAM-negative, but positive for markers of oligodendrocyte precursor cells (OPCs). Consistent with previous data on polySia-SynCAM 1, polySia in Ncam(-/-) NG2 cells was exclusively attached to N-glycans and synthesized by ST8SIA2, one out of two mammalian polysialyltransferases. Unexpectedly, Golgi-confined polySia was also detected in Ncam(-/-) microglia, but this fraction resided on O-glycans and was produced by the second polysialyltransferase, ST8SIA4, indicating the presence of yet another polySia carrier in microglia. Searching for this carrier, we identified polysialylated neuropilin-2, so far only known from dendritic cells and exudate macrophages. Microglia activation by LPS, but not interleukin-4, caused a transient translocation of Golgi-localized polySia to the cell surface, resulting in complete depletion. Finally, NO-production of LPS-stimulated microglia was attenuated by addition of polySia suggesting that the observed loss of polySia-neuropilin-2 is involved in negative feedback regulation of pro-inflammatory microglia polarization.


Assuntos
Moléculas de Adesão Celular/metabolismo , Complexo de Golgi/metabolismo , Imunoglobulinas/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neuropilina-2/metabolismo , Ácidos Siálicos/metabolismo , Animais , Encéfalo/metabolismo , Molécula 1 de Adesão Celular , Células Cultivadas , Interleucina-4/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oligodendroglia/metabolismo , Sialiltransferases/metabolismo
8.
Neurochem Res ; 38(6): 1134-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23354723

RESUMO

The glycan polysialic acid is well-known as a unique posttranslational modification of the neural cell adhesion molecule NCAM. Despite remarkable acceptor specificity, however, a few other proteins can be targets of polysialylation. Here, we recapitulate the biosynthesis of polysialic acid by the two polysialyltransferases ST8SIA2 and ST8SIA4 and highlight the increasing evidence that variation in the human ST8SIA2 gene is linked to schizophrenia and possibly other neuropsychiatric disorders. Moreover, we summarize the knowledge on the role of NCAM polysialylation in brain development gained by the analysis of NCAM- and polysialyltransferase-deficient mouse models. The last part of this review is focused on recent advances in identifying SynCAM 1 and neuropilin-2 as novel acceptors of polysialic acid in NG2 cells of the perinatal brain and in dendritic cells of the immune system, respectively.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuropilina-2/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Animais , Encéfalo/enzimologia , Molécula 1 de Adesão Celular , Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Células Dendríticas/fisiologia , Humanos , Camundongos , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Sialiltransferases/deficiência , Sialiltransferases/genética , Especificidade por Substrato
9.
J Cell Sci ; 124(Pt 19): 3279-91, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940794

RESUMO

The polysialic acid (polySia) modification of the neural cell adhesion molecule NCAM is a key regulator of cell migration. Yet its role in NCAM-dependent or NCAM-independent modulation of motility and cell-matrix adhesion is largely unresolved. Here, we demonstrate that loss of polySia attenuates tumour cell migration and augments the number of focal adhesions in a cell-cell contact- and NCAM-dependent manner. In the presence or absence of polySia, NCAM never colocalised with focal adhesions but was enriched at cell-cell contacts. Focal adhesion of polySia- and NCAM-negative cells was enhanced by incubation with soluble NCAM or by removing polySia from heterotypic contacts with polySia-NCAM-positive cells. Focal adhesion was compromised by the src-family kinase inhibitor PP2, whereas loss of polySia or exposure to NCAM promoted the association of p59(Fyn) with the focal adhesion scaffolding protein paxillin. Unlike other NCAM responses, NCAM-induced focal adhesion was not prevented by inhibiting FGF receptor activity and could be evoked by NCAM fragments comprising immunoglobulin domains three and four but not by the NCAM fibronectin domains alone or by an NCAM-derived peptide known to interact with and activate FGF receptors. Together, these data indicate that polySia regulates cell motility through NCAM-induced but FGF-receptor-independent signalling to focal adhesions.


Assuntos
Antígeno CD56/metabolismo , Adesões Focais/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Ácidos Siálicos/fisiologia , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Fibronectinas/metabolismo , Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases/fisiologia , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Paxilina/metabolismo , Faloidina/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA