Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 36: 100871, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive and lethal malignancies worldwide with an urgent need for new diagnostic and therapeutic strategies. One major risk factor for PDAC is the pre-indication of chronic pancreatitis (CP), which represents highly inflammatory pancreatic tissue. Kallikreins (KLKs) are secreted serine proteases that play an important role in various cancers as components of the tumor microenvironment. Previous studies of KLKs in solid tumors largely relied on either transcriptomics or immunodetection. We present one of the first targeted mass spectrometry profiling of kallikrein proteases in PDAC, CP, and normal pancreas. We show that KLK6 and KLK10 are significantly upregulated in PDAC (n=14) but not in CP (n=7) when compared to normal pancreas (n=16), highlighting their specific intertwining with malignancy. Additional explorative proteome profiling identified 5936 proteins in our pancreatic cohort and observed disease-specific proteome rearrangements in PDAC and CP. As such, PDAC features an enriched proteome motif for extracellular matrix (ECM) and cell adhesion while there is depletion of mitochondrial energy metabolism proteins, reminiscent of the Warburg effect. Although often regarded as a PDAC hallmark, the ECM fingerprint was also observed in CP, alongside with a prototypical inflammatory proteome motif as well as with an increased wound healing process and proteolytic activity, thereby possibly illustrating tissue autolysis. Proteogenomic analysis based on publicly accessible data sources identified 112 PDAC-specific and 32 CP-specific single amino acid variants, which among others affect KRAS and ANKHD1. Our study emphasizes the diagnostic potential of kallikreins and provides novel insights into proteomic characteristics of PDAC and CP.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Proteoma , Proteômica/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pâncreas/patologia , Endopeptidases/metabolismo , Calicreínas/genética , Microambiente Tumoral , Proteínas de Ligação a RNA/metabolismo , Neoplasias Pancreáticas
2.
PLoS Pathog ; 18(3): e1010367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239739

RESUMO

Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.


Assuntos
Botrytis , Nicotiana , Botrytis/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas , Nicotiana/genética , Nicotiana/microbiologia , Virulência/genética
3.
Anal Bioanal Chem ; 409(18): 4425-4435, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516281

RESUMO

Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage of the cells.


Assuntos
Osso e Ossos/citologia , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Osteoporose/patologia , Adipogenia , Diferenciação Celular , Humanos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA